AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.081 | 0.778 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.712 |
Model: | OLS | Adj. R-squared: | 0.666 |
Method: | Least Squares | F-statistic: | 15.63 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.30e-05 |
Time: | 04:35:27 | Log-Likelihood: | -98.804 |
No. Observations: | 23 | AIC: | 205.6 |
Df Residuals: | 19 | BIC: | 210.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -187.9137 | 192.886 | -0.974 | 0.342 | -591.629 215.802 |
C(dose)[T.1] | 576.1367 | 261.129 | 2.206 | 0.040 | 29.588 1122.686 |
expression | 28.0874 | 22.366 | 1.256 | 0.224 | -18.726 74.900 |
expression:C(dose)[T.1] | -61.4995 | 30.640 | -2.007 | 0.059 | -125.630 2.631 |
Omnibus: | 0.659 | Durbin-Watson: | 1.829 |
Prob(Omnibus): | 0.719 | Jarque-Bera (JB): | 0.652 |
Skew: | 0.059 | Prob(JB): | 0.722 |
Kurtosis: | 2.184 | Cond. No. | 728. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.616 |
Method: | Least Squares | F-statistic: | 18.61 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.72e-05 |
Time: | 04:35:27 | Log-Likelihood: | -101.02 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 94.5752 | 141.534 | 0.668 | 0.512 | -200.659 389.809 |
C(dose)[T.1] | 52.3076 | 9.466 | 5.526 | 0.000 | 32.562 72.053 |
expression | -4.6828 | 16.404 | -0.285 | 0.778 | -38.900 29.535 |
Omnibus: | 0.790 | Durbin-Watson: | 1.949 |
Prob(Omnibus): | 0.674 | Jarque-Bera (JB): | 0.714 |
Skew: | 0.093 | Prob(JB): | 0.700 |
Kurtosis: | 2.157 | Cond. No. | 280. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:35:27 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.117 |
Model: | OLS | Adj. R-squared: | 0.075 |
Method: | Least Squares | F-statistic: | 2.778 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.110 |
Time: | 04:35:27 | Log-Likelihood: | -111.68 |
No. Observations: | 23 | AIC: | 227.4 |
Df Residuals: | 21 | BIC: | 229.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 413.6462 | 200.456 | 2.064 | 0.052 | -3.225 830.517 |
expression | -39.2157 | 23.528 | -1.667 | 0.110 | -88.144 9.712 |
Omnibus: | 1.379 | Durbin-Watson: | 2.579 |
Prob(Omnibus): | 0.502 | Jarque-Bera (JB): | 0.928 |
Skew: | -0.120 | Prob(JB): | 0.629 |
Kurtosis: | 2.045 | Cond. No. | 255. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
5.327 | 0.040 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.621 |
Model: | OLS | Adj. R-squared: | 0.517 |
Method: | Least Squares | F-statistic: | 6.000 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0112 |
Time: | 04:35:27 | Log-Likelihood: | -68.029 |
No. Observations: | 15 | AIC: | 144.1 |
Df Residuals: | 11 | BIC: | 146.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 403.4178 | 222.050 | 1.817 | 0.097 | -85.310 892.146 |
C(dose)[T.1] | 120.4972 | 333.197 | 0.362 | 0.724 | -612.864 853.858 |
expression | -35.7314 | 23.591 | -1.515 | 0.158 | -87.654 16.191 |
expression:C(dose)[T.1] | -9.7145 | 36.384 | -0.267 | 0.794 | -89.795 70.366 |
Omnibus: | 1.298 | Durbin-Watson: | 1.295 |
Prob(Omnibus): | 0.522 | Jarque-Bera (JB): | 0.938 |
Skew: | -0.333 | Prob(JB): | 0.626 |
Kurtosis: | 1.971 | Cond. No. | 583. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.618 |
Model: | OLS | Adj. R-squared: | 0.555 |
Method: | Least Squares | F-statistic: | 9.717 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00310 |
Time: | 04:35:27 | Log-Likelihood: | -68.078 |
No. Observations: | 15 | AIC: | 142.2 |
Df Residuals: | 12 | BIC: | 144.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 441.8193 | 162.496 | 2.719 | 0.019 | 87.772 795.867 |
C(dose)[T.1] | 31.6340 | 15.148 | 2.088 | 0.059 | -1.372 64.640 |
expression | -39.8153 | 17.251 | -2.308 | 0.040 | -77.402 -2.229 |
Omnibus: | 1.481 | Durbin-Watson: | 1.415 |
Prob(Omnibus): | 0.477 | Jarque-Bera (JB): | 1.012 |
Skew: | -0.354 | Prob(JB): | 0.603 |
Kurtosis: | 1.942 | Cond. No. | 232. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:35:27 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.480 |
Model: | OLS | Adj. R-squared: | 0.439 |
Method: | Least Squares | F-statistic: | 11.98 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00422 |
Time: | 04:35:27 | Log-Likelihood: | -70.403 |
No. Observations: | 15 | AIC: | 144.8 |
Df Residuals: | 13 | BIC: | 146.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 624.5919 | 153.592 | 4.067 | 0.001 | 292.777 956.407 |
expression | -57.9111 | 16.734 | -3.461 | 0.004 | -94.063 -21.759 |
Omnibus: | 2.418 | Durbin-Watson: | 2.390 |
Prob(Omnibus): | 0.298 | Jarque-Bera (JB): | 1.318 |
Skew: | 0.415 | Prob(JB): | 0.517 |
Kurtosis: | 1.809 | Cond. No. | 195. |