AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.462 | 0.504 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.661 |
Model: | OLS | Adj. R-squared: | 0.607 |
Method: | Least Squares | F-statistic: | 12.33 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000105 |
Time: | 05:26:48 | Log-Likelihood: | -100.68 |
No. Observations: | 23 | AIC: | 209.4 |
Df Residuals: | 19 | BIC: | 213.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 41.0040 | 53.678 | 0.764 | 0.454 | -71.346 153.354 |
C(dose)[T.1] | 17.5167 | 83.869 | 0.209 | 0.837 | -158.024 193.057 |
expression | 2.4999 | 10.096 | 0.248 | 0.807 | -18.632 23.632 |
expression:C(dose)[T.1] | 7.3608 | 16.380 | 0.449 | 0.658 | -26.922 41.644 |
Omnibus: | 0.098 | Durbin-Watson: | 1.793 |
Prob(Omnibus): | 0.952 | Jarque-Bera (JB): | 0.253 |
Skew: | 0.129 | Prob(JB): | 0.881 |
Kurtosis: | 2.556 | Cond. No. | 125. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.623 |
Method: | Least Squares | F-statistic: | 19.15 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.25e-05 |
Time: | 05:26:48 | Log-Likelihood: | -100.80 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 20 | BIC: | 211.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 26.2317 | 41.580 | 0.631 | 0.535 | -60.504 112.967 |
C(dose)[T.1] | 54.9799 | 9.001 | 6.108 | 0.000 | 36.205 73.755 |
expression | 5.2967 | 7.790 | 0.680 | 0.504 | -10.953 21.546 |
Omnibus: | 0.089 | Durbin-Watson: | 1.709 |
Prob(Omnibus): | 0.957 | Jarque-Bera (JB): | 0.310 |
Skew: | 0.050 | Prob(JB): | 0.856 |
Kurtosis: | 2.440 | Cond. No. | 51.7 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:26:48 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.017 |
Model: | OLS | Adj. R-squared: | -0.030 |
Method: | Least Squares | F-statistic: | 0.3638 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.553 |
Time: | 05:26:48 | Log-Likelihood: | -112.91 |
No. Observations: | 23 | AIC: | 229.8 |
Df Residuals: | 21 | BIC: | 232.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 118.1009 | 64.042 | 1.844 | 0.079 | -15.081 251.283 |
expression | -7.4770 | 12.397 | -0.603 | 0.553 | -33.258 18.304 |
Omnibus: | 2.828 | Durbin-Watson: | 2.570 |
Prob(Omnibus): | 0.243 | Jarque-Bera (JB): | 1.485 |
Skew: | 0.299 | Prob(JB): | 0.476 |
Kurtosis: | 1.908 | Cond. No. | 47.9 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.608 | 0.451 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.478 |
Model: | OLS | Adj. R-squared: | 0.336 |
Method: | Least Squares | F-statistic: | 3.360 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0588 |
Time: | 05:26:48 | Log-Likelihood: | -70.422 |
No. Observations: | 15 | AIC: | 148.8 |
Df Residuals: | 11 | BIC: | 151.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 18.9749 | 73.210 | 0.259 | 0.800 | -142.159 180.109 |
C(dose)[T.1] | 70.2100 | 99.449 | 0.706 | 0.495 | -148.676 289.096 |
expression | 11.0924 | 16.545 | 0.670 | 0.516 | -25.323 47.508 |
expression:C(dose)[T.1] | -5.2945 | 21.695 | -0.244 | 0.812 | -53.045 42.456 |
Omnibus: | 3.002 | Durbin-Watson: | 0.746 |
Prob(Omnibus): | 0.223 | Jarque-Bera (JB): | 2.155 |
Skew: | -0.899 | Prob(JB): | 0.341 |
Kurtosis: | 2.535 | Cond. No. | 83.1 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.475 |
Model: | OLS | Adj. R-squared: | 0.388 |
Method: | Least Squares | F-statistic: | 5.437 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0209 |
Time: | 05:26:48 | Log-Likelihood: | -70.462 |
No. Observations: | 15 | AIC: | 146.9 |
Df Residuals: | 12 | BIC: | 149.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 32.4257 | 46.259 | 0.701 | 0.497 | -68.364 133.215 |
C(dose)[T.1] | 46.2751 | 15.806 | 2.928 | 0.013 | 11.838 80.712 |
expression | 8.0131 | 10.274 | 0.780 | 0.451 | -14.372 30.398 |
Omnibus: | 2.832 | Durbin-Watson: | 0.735 |
Prob(Omnibus): | 0.243 | Jarque-Bera (JB): | 2.072 |
Skew: | -0.872 | Prob(JB): | 0.355 |
Kurtosis: | 2.476 | Cond. No. | 29.4 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:26:48 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.101 |
Model: | OLS | Adj. R-squared: | 0.031 |
Method: | Least Squares | F-statistic: | 1.454 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.249 |
Time: | 05:26:48 | Log-Likelihood: | -74.505 |
No. Observations: | 15 | AIC: | 153.0 |
Df Residuals: | 13 | BIC: | 154.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 24.5807 | 58.094 | 0.423 | 0.679 | -100.924 150.085 |
expression | 15.1417 | 12.556 | 1.206 | 0.249 | -11.984 42.268 |
Omnibus: | 0.456 | Durbin-Watson: | 1.625 |
Prob(Omnibus): | 0.796 | Jarque-Bera (JB): | 0.543 |
Skew: | 0.178 | Prob(JB): | 0.762 |
Kurtosis: | 2.139 | Cond. No. | 29.2 |