AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.003 | 0.956 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.596 |
Method: | Least Squares | F-statistic: | 11.81 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.000136 |
Time: | 11:39:37 | Log-Likelihood: | -101.00 |
No. Observations: | 23 | AIC: | 210.0 |
Df Residuals: | 19 | BIC: | 214.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 47.1291 | 68.528 | 0.688 | 0.500 | -96.301 190.560 |
C(dose)[T.1] | 98.0098 | 145.303 | 0.675 | 0.508 | -206.112 402.132 |
expression | 1.0290 | 9.920 | 0.104 | 0.918 | -19.734 21.792 |
expression:C(dose)[T.1] | -6.1726 | 20.123 | -0.307 | 0.762 | -48.291 35.946 |
Omnibus: | 0.092 | Durbin-Watson: | 1.867 |
Prob(Omnibus): | 0.955 | Jarque-Bera (JB): | 0.318 |
Skew: | 0.013 | Prob(JB): | 0.853 |
Kurtosis: | 2.425 | Cond. No. | 277. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 11:39:37 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 57.4487 | 58.333 | 0.985 | 0.336 | -64.232 179.130 |
C(dose)[T.1] | 53.5393 | 9.487 | 5.644 | 0.000 | 33.750 73.328 |
expression | -0.4710 | 8.433 | -0.056 | 0.956 | -18.062 17.120 |
Omnibus: | 0.271 | Durbin-Watson: | 1.886 |
Prob(Omnibus): | 0.873 | Jarque-Bera (JB): | 0.453 |
Skew: | 0.057 | Prob(JB): | 0.797 |
Kurtosis: | 2.322 | Cond. No. | 96.9 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 11:39:37 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.090 |
Model: | OLS | Adj. R-squared: | 0.047 |
Method: | Least Squares | F-statistic: | 2.085 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.164 |
Time: | 11:39:37 | Log-Likelihood: | -112.02 |
No. Observations: | 23 | AIC: | 228.0 |
Df Residuals: | 21 | BIC: | 230.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -45.5863 | 87.056 | -0.524 | 0.606 | -226.629 135.457 |
expression | 17.6860 | 12.249 | 1.444 | 0.164 | -7.787 43.159 |
Omnibus: | 3.920 | Durbin-Watson: | 2.679 |
Prob(Omnibus): | 0.141 | Jarque-Bera (JB): | 1.760 |
Skew: | 0.331 | Prob(JB): | 0.415 |
Kurtosis: | 1.818 | Cond. No. | 91.7 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.348 | 0.566 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.481 |
Model: | OLS | Adj. R-squared: | 0.340 |
Method: | Least Squares | F-statistic: | 3.401 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.0571 |
Time: | 11:39:37 | Log-Likelihood: | -70.378 |
No. Observations: | 15 | AIC: | 148.8 |
Df Residuals: | 11 | BIC: | 151.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -77.9481 | 183.726 | -0.424 | 0.680 | -482.326 326.430 |
C(dose)[T.1] | 173.7660 | 202.828 | 0.857 | 0.410 | -272.656 620.188 |
expression | 20.2427 | 25.531 | 0.793 | 0.445 | -35.951 76.436 |
expression:C(dose)[T.1] | -17.1178 | 28.561 | -0.599 | 0.561 | -79.979 45.744 |
Omnibus: | 1.697 | Durbin-Watson: | 1.172 |
Prob(Omnibus): | 0.428 | Jarque-Bera (JB): | 1.208 |
Skew: | -0.658 | Prob(JB): | 0.547 |
Kurtosis: | 2.551 | Cond. No. | 272. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.464 |
Model: | OLS | Adj. R-squared: | 0.375 |
Method: | Least Squares | F-statistic: | 5.200 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.0236 |
Time: | 11:39:37 | Log-Likelihood: | -70.619 |
No. Observations: | 15 | AIC: | 147.2 |
Df Residuals: | 12 | BIC: | 149.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 20.2888 | 80.758 | 0.251 | 0.806 | -155.669 196.246 |
C(dose)[T.1] | 52.6311 | 16.574 | 3.175 | 0.008 | 16.519 88.743 |
expression | 6.5639 | 11.134 | 0.590 | 0.566 | -17.695 30.822 |
Omnibus: | 1.323 | Durbin-Watson: | 1.073 |
Prob(Omnibus): | 0.516 | Jarque-Bera (JB): | 0.837 |
Skew: | -0.557 | Prob(JB): | 0.658 |
Kurtosis: | 2.688 | Cond. No. | 74.4 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.00629 |
Time: | 11:39:37 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.014 |
Model: | OLS | Adj. R-squared: | -0.062 |
Method: | Least Squares | F-statistic: | 0.1863 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.673 |
Time: | 11:39:38 | Log-Likelihood: | -75.193 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 134.1422 | 94.315 | 1.422 | 0.178 | -69.613 337.897 |
expression | -5.8638 | 13.585 | -0.432 | 0.673 | -35.213 23.485 |
Omnibus: | 0.524 | Durbin-Watson: | 1.528 |
Prob(Omnibus): | 0.770 | Jarque-Bera (JB): | 0.551 |
Skew: | -0.052 | Prob(JB): | 0.759 |
Kurtosis: | 2.067 | Cond. No. | 66.2 |