AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.778 0.197 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.690
Model: OLS Adj. R-squared: 0.641
Method: Least Squares F-statistic: 14.07
Date: Thu, 03 Apr 2025 Prob (F-statistic): 4.56e-05
Time: 23:02:19 Log-Likelihood: -99.649
No. Observations: 23 AIC: 207.3
Df Residuals: 19 BIC: 211.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 109.1140 100.749 1.083 0.292 -101.757 319.985
C(dose)[T.1] 229.6522 186.099 1.234 0.232 -159.857 619.162
expression -7.9879 14.633 -0.546 0.591 -38.614 22.639
expression:C(dose)[T.1] -20.8462 24.377 -0.855 0.403 -71.869 30.176
Omnibus: 0.219 Durbin-Watson: 1.640
Prob(Omnibus): 0.896 Jarque-Bera (JB): 0.390
Skew: -0.172 Prob(JB): 0.823
Kurtosis: 2.462 Cond. No. 412.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.678
Model: OLS Adj. R-squared: 0.645
Method: Least Squares F-statistic: 21.03
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.21e-05
Time: 23:02:19 Log-Likelihood: -100.08
No. Observations: 23 AIC: 206.2
Df Residuals: 20 BIC: 209.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 160.7417 80.113 2.006 0.059 -6.371 327.855
C(dose)[T.1] 71.0894 15.745 4.515 0.000 38.246 103.933
expression -15.4989 11.624 -1.333 0.197 -39.747 8.749
Omnibus: 0.434 Durbin-Watson: 1.856
Prob(Omnibus): 0.805 Jarque-Bera (JB): 0.568
Skew: -0.195 Prob(JB): 0.753
Kurtosis: 2.337 Cond. No. 147.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 23:02:19 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.349
Model: OLS Adj. R-squared: 0.318
Method: Least Squares F-statistic: 11.27
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00299
Time: 23:02:20 Log-Likelihood: -108.16
No. Observations: 23 AIC: 220.3
Df Residuals: 21 BIC: 222.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -134.6393 64.123 -2.100 0.048 -267.990 -1.288
expression 28.8835 8.605 3.357 0.003 10.989 46.778
Omnibus: 4.269 Durbin-Watson: 2.036
Prob(Omnibus): 0.118 Jarque-Bera (JB): 1.987
Skew: 0.408 Prob(JB): 0.370
Kurtosis: 1.814 Cond. No. 83.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.012 0.915 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.506
Model: OLS Adj. R-squared: 0.371
Method: Least Squares F-statistic: 3.750
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0446
Time: 23:02:20 Log-Likelihood: -70.017
No. Observations: 15 AIC: 148.0
Df Residuals: 11 BIC: 150.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 112.8484 91.422 1.234 0.243 -88.370 314.067
C(dose)[T.1] -146.1596 175.061 -0.835 0.422 -531.467 239.148
expression -8.5806 17.137 -0.501 0.626 -46.299 29.138
expression:C(dose)[T.1] 36.1549 32.306 1.119 0.287 -34.951 107.260
Omnibus: 1.370 Durbin-Watson: 0.885
Prob(Omnibus): 0.504 Jarque-Bera (JB): 1.100
Skew: -0.586 Prob(JB): 0.577
Kurtosis: 2.377 Cond. No. 153.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 4.895
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0279
Time: 23:02:20 Log-Likelihood: -70.826
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 58.9970 78.547 0.751 0.467 -112.143 230.137
C(dose)[T.1] 48.9667 15.874 3.085 0.009 14.381 83.553
expression 1.5929 14.679 0.109 0.915 -30.391 33.576
Omnibus: 2.714 Durbin-Watson: 0.804
Prob(Omnibus): 0.257 Jarque-Bera (JB): 1.885
Skew: -0.845 Prob(JB): 0.390
Kurtosis: 2.602 Cond. No. 56.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 23:02:20 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.013
Model: OLS Adj. R-squared: -0.063
Method: Least Squares F-statistic: 0.1662
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.690
Time: 23:02:20 Log-Likelihood: -75.205
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 52.6849 101.016 0.522 0.611 -165.547 270.917
expression 7.6313 18.716 0.408 0.690 -32.803 48.065
Omnibus: 0.146 Durbin-Watson: 1.502
Prob(Omnibus): 0.929 Jarque-Bera (JB): 0.360
Skew: -0.065 Prob(JB): 0.835
Kurtosis: 2.253 Cond. No. 55.8