AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.340 0.567 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.663
Model: OLS Adj. R-squared: 0.610
Method: Least Squares F-statistic: 12.47
Date: Tue, 28 Jan 2025 Prob (F-statistic): 9.74e-05
Time: 17:18:20 Log-Likelihood: -100.59
No. Observations: 23 AIC: 209.2
Df Residuals: 19 BIC: 213.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 61.2646 42.487 1.442 0.166 -27.663 150.192
C(dose)[T.1] 132.0462 106.656 1.238 0.231 -91.187 355.279
expression -1.2383 7.379 -0.168 0.869 -16.683 14.206
expression:C(dose)[T.1] -10.3659 15.130 -0.685 0.502 -42.033 21.301
Omnibus: 2.339 Durbin-Watson: 1.719
Prob(Omnibus): 0.311 Jarque-Bera (JB): 1.259
Skew: 0.214 Prob(JB): 0.533
Kurtosis: 1.936 Cond. No. 198.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.655
Model: OLS Adj. R-squared: 0.620
Method: Least Squares F-statistic: 18.98
Date: Tue, 28 Jan 2025 Prob (F-statistic): 2.39e-05
Time: 17:18:21 Log-Likelihood: -100.87
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 75.3151 36.714 2.051 0.054 -1.268 151.898
C(dose)[T.1] 59.6066 13.833 4.309 0.000 30.751 88.462
expression -3.7041 6.356 -0.583 0.567 -16.962 9.554
Omnibus: 1.106 Durbin-Watson: 1.737
Prob(Omnibus): 0.575 Jarque-Bera (JB): 0.813
Skew: 0.025 Prob(JB): 0.666
Kurtosis: 2.080 Cond. No. 59.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 28 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 17:18:21 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.335
Model: OLS Adj. R-squared: 0.303
Method: Least Squares F-statistic: 10.56
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00384
Time: 17:18:21 Log-Likelihood: -108.42
No. Observations: 23 AIC: 220.8
Df Residuals: 21 BIC: 223.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -34.7838 35.727 -0.974 0.341 -109.082 39.514
expression 17.5945 5.415 3.249 0.004 6.334 28.855
Omnibus: 2.132 Durbin-Watson: 2.496
Prob(Omnibus): 0.344 Jarque-Bera (JB): 1.327
Skew: 0.308 Prob(JB): 0.515
Kurtosis: 1.997 Cond. No. 40.9

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.127 0.728 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.462
Model: OLS Adj. R-squared: 0.315
Method: Least Squares F-statistic: 3.150
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0687
Time: 17:18:21 Log-Likelihood: -70.649
No. Observations: 15 AIC: 149.3
Df Residuals: 11 BIC: 152.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 96.0841 179.273 0.536 0.603 -298.494 490.662
C(dose)[T.1] -37.5571 214.304 -0.175 0.864 -509.237 434.123
expression -7.9630 49.708 -0.160 0.876 -117.370 101.444
expression:C(dose)[T.1] 22.8168 58.001 0.393 0.702 -104.842 150.476
Omnibus: 1.754 Durbin-Watson: 0.992
Prob(Omnibus): 0.416 Jarque-Bera (JB): 1.389
Skew: -0.654 Prob(JB): 0.499
Kurtosis: 2.287 Cond. No. 159.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.455
Model: OLS Adj. R-squared: 0.364
Method: Least Squares F-statistic: 5.000
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0263
Time: 17:18:21 Log-Likelihood: -70.754
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 35.7757 89.599 0.399 0.697 -159.444 230.995
C(dose)[T.1] 46.4459 17.458 2.660 0.021 8.408 84.483
expression 8.7959 24.695 0.356 0.728 -45.009 62.601
Omnibus: 1.965 Durbin-Watson: 0.780
Prob(Omnibus): 0.374 Jarque-Bera (JB): 1.522
Skew: -0.705 Prob(JB): 0.467
Kurtosis: 2.333 Cond. No. 47.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00629
Time: 17:18:21 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.133
Model: OLS Adj. R-squared: 0.066
Method: Least Squares F-statistic: 1.991
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.182
Time: 17:18:21 Log-Likelihood: -74.231
No. Observations: 15 AIC: 152.5
Df Residuals: 13 BIC: 153.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -48.8793 101.467 -0.482 0.638 -268.085 170.327
expression 37.8570 26.830 1.411 0.182 -20.105 95.819
Omnibus: 0.149 Durbin-Watson: 1.263
Prob(Omnibus): 0.928 Jarque-Bera (JB): 0.301
Skew: 0.186 Prob(JB): 0.860
Kurtosis: 2.413 Cond. No. 43.4