AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.463 | 0.504 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.726 |
Model: | OLS | Adj. R-squared: | 0.683 |
Method: | Least Squares | F-statistic: | 16.77 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.44e-05 |
Time: | 05:12:21 | Log-Likelihood: | -98.224 |
No. Observations: | 23 | AIC: | 204.4 |
Df Residuals: | 19 | BIC: | 209.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 189.5620 | 68.685 | 2.760 | 0.012 | 45.802 333.322 |
C(dose)[T.1] | -175.7938 | 104.809 | -1.677 | 0.110 | -395.162 43.574 |
expression | -20.0360 | 10.135 | -1.977 | 0.063 | -41.248 1.176 |
expression:C(dose)[T.1] | 34.2629 | 15.691 | 2.184 | 0.042 | 1.422 67.104 |
Omnibus: | 0.959 | Durbin-Watson: | 1.640 |
Prob(Omnibus): | 0.619 | Jarque-Bera (JB): | 0.941 |
Skew: | 0.371 | Prob(JB): | 0.625 |
Kurtosis: | 2.344 | Cond. No. | 226. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.623 |
Method: | Least Squares | F-statistic: | 19.15 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.25e-05 |
Time: | 05:12:21 | Log-Likelihood: | -100.80 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 20 | BIC: | 211.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 92.9982 | 57.294 | 1.623 | 0.120 | -26.515 212.511 |
C(dose)[T.1] | 52.3954 | 8.780 | 5.968 | 0.000 | 34.081 70.709 |
expression | -5.7419 | 8.434 | -0.681 | 0.504 | -23.336 11.852 |
Omnibus: | 0.066 | Durbin-Watson: | 1.921 |
Prob(Omnibus): | 0.968 | Jarque-Bera (JB): | 0.166 |
Skew: | -0.105 | Prob(JB): | 0.920 |
Kurtosis: | 2.641 | Cond. No. | 90.8 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:12:21 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.046 |
Model: | OLS | Adj. R-squared: | 0.001 |
Method: | Least Squares | F-statistic: | 1.018 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.325 |
Time: | 05:12:21 | Log-Likelihood: | -112.56 |
No. Observations: | 23 | AIC: | 229.1 |
Df Residuals: | 21 | BIC: | 231.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 171.0142 | 90.779 | 1.884 | 0.074 | -17.770 359.799 |
expression | -13.6731 | 13.554 | -1.009 | 0.325 | -41.861 14.515 |
Omnibus: | 5.313 | Durbin-Watson: | 2.400 |
Prob(Omnibus): | 0.070 | Jarque-Bera (JB): | 2.314 |
Skew: | 0.467 | Prob(JB): | 0.314 |
Kurtosis: | 1.757 | Cond. No. | 88.2 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.639 | 0.439 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.833 |
Model: | OLS | Adj. R-squared: | 0.787 |
Method: | Least Squares | F-statistic: | 18.29 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000139 |
Time: | 05:12:21 | Log-Likelihood: | -61.876 |
No. Observations: | 15 | AIC: | 131.8 |
Df Residuals: | 11 | BIC: | 134.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 371.6912 | 160.032 | 2.323 | 0.040 | 19.462 723.920 |
C(dose)[T.1] | -1212.1381 | 260.525 | -4.653 | 0.001 | -1785.549 -638.727 |
expression | -41.3327 | 21.721 | -1.903 | 0.084 | -89.141 6.475 |
expression:C(dose)[T.1] | 171.5171 | 35.399 | 4.845 | 0.001 | 93.605 249.429 |
Omnibus: | 0.346 | Durbin-Watson: | 1.431 |
Prob(Omnibus): | 0.841 | Jarque-Bera (JB): | 0.473 |
Skew: | 0.026 | Prob(JB): | 0.789 |
Kurtosis: | 2.131 | Cond. No. | 545. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.477 |
Model: | OLS | Adj. R-squared: | 0.389 |
Method: | Least Squares | F-statistic: | 5.465 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0205 |
Time: | 05:12:21 | Log-Likelihood: | -70.444 |
No. Observations: | 15 | AIC: | 146.9 |
Df Residuals: | 12 | BIC: | 149.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -103.7035 | 214.297 | -0.484 | 0.637 | -570.616 363.209 |
C(dose)[T.1] | 49.4205 | 15.339 | 3.222 | 0.007 | 16.000 82.841 |
expression | 23.2475 | 29.071 | 0.800 | 0.439 | -40.094 86.589 |
Omnibus: | 3.163 | Durbin-Watson: | 0.693 |
Prob(Omnibus): | 0.206 | Jarque-Bera (JB): | 2.267 |
Skew: | -0.925 | Prob(JB): | 0.322 |
Kurtosis: | 2.545 | Cond. No. | 211. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:12:21 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.024 |
Model: | OLS | Adj. R-squared: | -0.051 |
Method: | Least Squares | F-statistic: | 0.3189 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.582 |
Time: | 05:12:21 | Log-Likelihood: | -75.118 |
No. Observations: | 15 | AIC: | 154.2 |
Df Residuals: | 13 | BIC: | 155.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -64.7569 | 280.730 | -0.231 | 0.821 | -671.237 541.723 |
expression | 21.5362 | 38.138 | 0.565 | 0.582 | -60.856 103.929 |
Omnibus: | 0.444 | Durbin-Watson: | 1.645 |
Prob(Omnibus): | 0.801 | Jarque-Bera (JB): | 0.329 |
Skew: | -0.311 | Prob(JB): | 0.848 |
Kurtosis: | 2.625 | Cond. No. | 210. |