AIM Score vs. Gene Expression 
		Full X range:
		
		 
			
		
		Auto X range:
		
		 
		
		
		
		Group Comparisons: Boxplots
		
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  1.218  |   0.283  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.670 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.618 | 
  | Method: |              Least Squares |     F-statistic:        |     12.86 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  8.05e-05 | 
  | Time: |                  09:20:24 |        Log-Likelihood:     |   -100.35 | 
  | No. Observations: |           23 |         AIC:                |     208.7 | 
  | Df Residuals: |               19 |         BIC:                |     213.2 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                    9.2155 |     49.590 |      0.186 |   0.855 |    -94.577   113.009 | 
  | C(dose)[T.1] |                69.5148 |     68.705 |      1.012 |   0.324 |    -74.286   213.316 | 
  | expression |                   8.6367 |      9.448 |      0.914 |   0.372 |    -11.139    28.412 | 
  | expression:C(dose)[T.1] |     -2.9392 |     13.271 |     -0.221 |   0.827 |    -30.716    24.838 | 
  | Omnibus: |         0.164 |    Durbin-Watson:      |     1.950 | 
  | Prob(Omnibus): |   0.921 |    Jarque-Bera (JB):   |     0.371 | 
  | Skew: |            0.099 |    Prob(JB):           |     0.830 | 
  | Kurtosis: |        2.410 |    Cond. No.           |      110. | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.669 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.636 | 
  | Method: |              Least Squares |     F-statistic:        |     20.23 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  1.57e-05 | 
  | Time: |                  09:20:24 |        Log-Likelihood:     |   -100.38 | 
  | No. Observations: |           23 |         AIC:                |     206.8 | 
  | Df Residuals: |               20 |         BIC:                |     210.2 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        16.9767 |     34.243 |      0.496 |   0.625 |    -54.453    88.406 | 
  | C(dose)[T.1] |     54.4234 |      8.571 |      6.350 |   0.000 |     36.544    72.302 | 
  | expression |        7.1469 |      6.475 |      1.104 |   0.283 |     -6.360    20.654 | 
  | Omnibus: |         0.234 |    Durbin-Watson:      |     1.970 | 
  | Prob(Omnibus): |   0.890 |    Jarque-Bera (JB):   |     0.413 | 
  | Skew: |            0.165 |    Prob(JB):           |     0.814 | 
  | Kurtosis: |        2.433 |    Cond. No.           |      43.4 | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.649 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.632 | 
  | Method: |              Least Squares |     F-statistic:        |     38.84 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  3.51e-06 | 
  | Time: |                  09:20:24 |        Log-Likelihood:     |   -101.06 | 
  | No. Observations: |           23 |         AIC:                |     206.1 | 
  | Df Residuals: |               21 |         BIC:                |     208.4 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        54.2083 |      5.919 |      9.159 |   0.000 |     41.900    66.517 | 
  | C(dose)[T.1] |     53.3371 |      8.558 |      6.232 |   0.000 |     35.539    71.135 | 
  | Omnibus: |         0.322 |    Durbin-Watson:      |     1.888 | 
  | Prob(Omnibus): |   0.851 |    Jarque-Bera (JB):   |     0.485 | 
  | Skew: |            0.060 |    Prob(JB):           |     0.785 | 
  | Kurtosis: |        2.299 |    Cond. No.           |      2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.002 | 
  | Model: |                    OLS |          Adj. R-squared:     |    -0.045 | 
  | Method: |              Least Squares |     F-statistic:        |   0.04951 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |    0.826 |  
  | Time: |                  09:20:24 |        Log-Likelihood:     |   -113.08 | 
  | No. Observations: |           23 |         AIC:                |     230.2 | 
  | Df Residuals: |               21 |         BIC:                |     232.4 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |      67.2571 |     56.462 |      1.191 |   0.247 |    -50.161   184.675 | 
  | expression |      2.4257 |     10.902 |      0.223 |   0.826 |    -20.245    25.097 | 
  | Omnibus: |         2.913 |    Durbin-Watson:      |     2.487 | 
  | Prob(Omnibus): |   0.233 |    Jarque-Bera (JB):   |     1.508 | 
  | Skew: |            0.302 |    Prob(JB):           |     0.470 | 
  | Kurtosis: |        1.900 |    Cond. No.           |      42.1 | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  0.573  |   0.464  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.518 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.386 | 
  | Method: |              Least Squares |     F-statistic:        |     3.938 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0392 |  
  | Time: |                  09:20:24 |        Log-Likelihood:     |   -69.829 | 
  | No. Observations: |           15 |         AIC:                |     147.7 | 
  | Df Residuals: |               11 |         BIC:                |     150.5 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                  132.8422 |     65.727 |      2.021 |   0.068 |    -11.822   277.506 | 
  | C(dose)[T.1] |              -174.4582 |    222.608 |     -0.784 |   0.450 |   -664.416   315.499 | 
  | expression |                 -10.7711 |     10.664 |     -1.010 |   0.334 |    -34.241    12.699 | 
  | expression:C(dose)[T.1] |     37.5702 |     37.523 |      1.001 |   0.338 |    -45.016   120.157 | 
  | Omnibus: |         3.525 |    Durbin-Watson:      |     1.176 | 
  | Prob(Omnibus): |   0.172 |    Jarque-Bera (JB):   |     1.724 | 
  | Skew: |           -0.817 |    Prob(JB):           |     0.422 | 
  | Kurtosis: |        3.300 |    Cond. No.           |      208. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.474 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.386 | 
  | Method: |              Least Squares |     F-statistic:        |     5.404 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0212 |  
  | Time: |                  09:20:24 |        Log-Likelihood:     |   -70.483 | 
  | No. Observations: |           15 |         AIC:                |     147.0 | 
  | Df Residuals: |               12 |         BIC:                |     149.1 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |       114.4145 |     63.104 |      1.813 |   0.095 |    -23.078   251.907 | 
  | C(dose)[T.1] |     47.8938 |     15.473 |      3.095 |   0.009 |     14.181    81.607 | 
  | expression |       -7.7368 |     10.225 |     -0.757 |   0.464 |    -30.015    14.542 | 
  | Omnibus: |         2.286 |    Durbin-Watson:      |     0.866 | 
  | Prob(Omnibus): |   0.319 |    Jarque-Bera (JB):   |     1.662 | 
  | Skew: |           -0.775 |    Prob(JB):           |     0.436 | 
  | Kurtosis: |        2.494 |    Cond. No.           |      51.2 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.449 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.406 | 
  | Method: |              Least Squares |     F-statistic:        |     10.58 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.00629 | 
  | Time: |                  09:20:24 |        Log-Likelihood:     |   -70.833 | 
  | No. Observations: |           15 |         AIC:                |     145.7 | 
  | Df Residuals: |               13 |         BIC:                |     147.1 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        67.4286 |     11.044 |      6.106 |   0.000 |     43.570    91.287 | 
  | C(dose)[T.1] |     49.1964 |     15.122 |      3.253 |   0.006 |     16.527    81.866 | 
  | Omnibus: |         2.713 |    Durbin-Watson:      |     0.810 | 
  | Prob(Omnibus): |   0.258 |    Jarque-Bera (JB):   |     1.868 | 
  | Skew: |           -0.843 |    Prob(JB):           |     0.393 | 
  | Kurtosis: |        2.619 |    Cond. No.           |      2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.054 | 
  | Model: |                    OLS |          Adj. R-squared:     |    -0.019 | 
  | Method: |              Least Squares |     F-statistic:        |    0.7394 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |    0.405 |  
  | Time: |                  09:20:24 |        Log-Likelihood:     |   -74.885 | 
  | No. Observations: |           15 |         AIC:                |     153.8 | 
  | Df Residuals: |               13 |         BIC:                |     155.2 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |     161.0274 |     78.956 |      2.039 |   0.062 |     -9.548   331.602 | 
  | expression |    -11.2582 |     13.092 |     -0.860 |   0.405 |    -39.543    17.026 | 
  | Omnibus: |         2.763 |    Durbin-Watson:      |     1.699 | 
  | Prob(Omnibus): |   0.251 |    Jarque-Bera (JB):   |     1.212 | 
  | Skew: |            0.268 |    Prob(JB):           |     0.545 | 
  | Kurtosis: |        1.715 |    Cond. No.           |      49.5 |