AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.218 0.283 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.670
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 12.86
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.05e-05
Time: 04:38:37 Log-Likelihood: -100.35
No. Observations: 23 AIC: 208.7
Df Residuals: 19 BIC: 213.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 9.2155 49.590 0.186 0.855 -94.577 113.009
C(dose)[T.1] 69.5148 68.705 1.012 0.324 -74.286 213.316
expression 8.6367 9.448 0.914 0.372 -11.139 28.412
expression:C(dose)[T.1] -2.9392 13.271 -0.221 0.827 -30.716 24.838
Omnibus: 0.164 Durbin-Watson: 1.950
Prob(Omnibus): 0.921 Jarque-Bera (JB): 0.371
Skew: 0.099 Prob(JB): 0.830
Kurtosis: 2.410 Cond. No. 110.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.669
Model: OLS Adj. R-squared: 0.636
Method: Least Squares F-statistic: 20.23
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.57e-05
Time: 04:38:37 Log-Likelihood: -100.38
No. Observations: 23 AIC: 206.8
Df Residuals: 20 BIC: 210.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 16.9767 34.243 0.496 0.625 -54.453 88.406
C(dose)[T.1] 54.4234 8.571 6.350 0.000 36.544 72.302
expression 7.1469 6.475 1.104 0.283 -6.360 20.654
Omnibus: 0.234 Durbin-Watson: 1.970
Prob(Omnibus): 0.890 Jarque-Bera (JB): 0.413
Skew: 0.165 Prob(JB): 0.814
Kurtosis: 2.433 Cond. No. 43.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:38:37 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.002
Model: OLS Adj. R-squared: -0.045
Method: Least Squares F-statistic: 0.04951
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.826
Time: 04:38:37 Log-Likelihood: -113.08
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.2571 56.462 1.191 0.247 -50.161 184.675
expression 2.4257 10.902 0.223 0.826 -20.245 25.097
Omnibus: 2.913 Durbin-Watson: 2.487
Prob(Omnibus): 0.233 Jarque-Bera (JB): 1.508
Skew: 0.302 Prob(JB): 0.470
Kurtosis: 1.900 Cond. No. 42.1

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.573 0.464 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.518
Model: OLS Adj. R-squared: 0.386
Method: Least Squares F-statistic: 3.938
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0392
Time: 04:38:37 Log-Likelihood: -69.829
No. Observations: 15 AIC: 147.7
Df Residuals: 11 BIC: 150.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 132.8422 65.727 2.021 0.068 -11.822 277.506
C(dose)[T.1] -174.4582 222.608 -0.784 0.450 -664.416 315.499
expression -10.7711 10.664 -1.010 0.334 -34.241 12.699
expression:C(dose)[T.1] 37.5702 37.523 1.001 0.338 -45.016 120.157
Omnibus: 3.525 Durbin-Watson: 1.176
Prob(Omnibus): 0.172 Jarque-Bera (JB): 1.724
Skew: -0.817 Prob(JB): 0.422
Kurtosis: 3.300 Cond. No. 208.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.474
Model: OLS Adj. R-squared: 0.386
Method: Least Squares F-statistic: 5.404
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0212
Time: 04:38:37 Log-Likelihood: -70.483
No. Observations: 15 AIC: 147.0
Df Residuals: 12 BIC: 149.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 114.4145 63.104 1.813 0.095 -23.078 251.907
C(dose)[T.1] 47.8938 15.473 3.095 0.009 14.181 81.607
expression -7.7368 10.225 -0.757 0.464 -30.015 14.542
Omnibus: 2.286 Durbin-Watson: 0.866
Prob(Omnibus): 0.319 Jarque-Bera (JB): 1.662
Skew: -0.775 Prob(JB): 0.436
Kurtosis: 2.494 Cond. No. 51.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:38:37 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.054
Model: OLS Adj. R-squared: -0.019
Method: Least Squares F-statistic: 0.7394
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.405
Time: 04:38:37 Log-Likelihood: -74.885
No. Observations: 15 AIC: 153.8
Df Residuals: 13 BIC: 155.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 161.0274 78.956 2.039 0.062 -9.548 331.602
expression -11.2582 13.092 -0.860 0.405 -39.543 17.026
Omnibus: 2.763 Durbin-Watson: 1.699
Prob(Omnibus): 0.251 Jarque-Bera (JB): 1.212
Skew: 0.268 Prob(JB): 0.545
Kurtosis: 1.715 Cond. No. 49.5