AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.802 | 0.381 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.667 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 12.69 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 8.76e-05 |
Time: | 05:01:48 | Log-Likelihood: | -100.46 |
No. Observations: | 23 | AIC: | 208.9 |
Df Residuals: | 19 | BIC: | 213.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 70.7134 | 143.593 | 0.492 | 0.628 | -229.830 371.257 |
C(dose)[T.1] | 138.0033 | 175.394 | 0.787 | 0.441 | -229.100 505.107 |
expression | -2.2069 | 19.183 | -0.115 | 0.910 | -42.357 37.943 |
expression:C(dose)[T.1] | -12.0002 | 23.816 | -0.504 | 0.620 | -61.848 37.848 |
Omnibus: | 0.308 | Durbin-Watson: | 1.970 |
Prob(Omnibus): | 0.857 | Jarque-Bera (JB): | 0.327 |
Skew: | 0.233 | Prob(JB): | 0.849 |
Kurtosis: | 2.649 | Cond. No. | 414. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.663 |
Model: | OLS | Adj. R-squared: | 0.629 |
Method: | Least Squares | F-statistic: | 19.64 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.91e-05 |
Time: | 05:01:48 | Log-Likelihood: | -100.61 |
No. Observations: | 23 | AIC: | 207.2 |
Df Residuals: | 20 | BIC: | 210.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 128.9361 | 83.639 | 1.542 | 0.139 | -45.532 303.404 |
C(dose)[T.1] | 49.7629 | 9.480 | 5.249 | 0.000 | 29.988 69.537 |
expression | -9.9918 | 11.155 | -0.896 | 0.381 | -33.261 13.277 |
Omnibus: | 0.136 | Durbin-Watson: | 2.005 |
Prob(Omnibus): | 0.934 | Jarque-Bera (JB): | 0.340 |
Skew: | 0.110 | Prob(JB): | 0.844 |
Kurtosis: | 2.447 | Cond. No. | 146. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:01:48 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.198 |
Model: | OLS | Adj. R-squared: | 0.160 |
Method: | Least Squares | F-statistic: | 5.175 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0335 |
Time: | 05:01:48 | Log-Likelihood: | -110.57 |
No. Observations: | 23 | AIC: | 225.1 |
Df Residuals: | 21 | BIC: | 227.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 332.8612 | 111.464 | 2.986 | 0.007 | 101.059 564.663 |
expression | -34.6400 | 15.227 | -2.275 | 0.034 | -66.306 -2.974 |
Omnibus: | 0.571 | Durbin-Watson: | 2.642 |
Prob(Omnibus): | 0.752 | Jarque-Bera (JB): | 0.479 |
Skew: | 0.317 | Prob(JB): | 0.787 |
Kurtosis: | 2.688 | Cond. No. | 129. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.930 | 0.354 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.575 |
Model: | OLS | Adj. R-squared: | 0.459 |
Method: | Least Squares | F-statistic: | 4.966 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0203 |
Time: | 05:01:48 | Log-Likelihood: | -68.878 |
No. Observations: | 15 | AIC: | 145.8 |
Df Residuals: | 11 | BIC: | 148.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -200.0240 | 150.327 | -1.331 | 0.210 | -530.891 130.843 |
C(dose)[T.1] | 361.1431 | 208.921 | 1.729 | 0.112 | -98.690 820.976 |
expression | 35.0088 | 19.629 | 1.784 | 0.102 | -8.194 78.212 |
expression:C(dose)[T.1] | -40.8011 | 27.210 | -1.499 | 0.162 | -100.690 19.088 |
Omnibus: | 4.448 | Durbin-Watson: | 1.039 |
Prob(Omnibus): | 0.108 | Jarque-Bera (JB): | 2.312 |
Skew: | -0.941 | Prob(JB): | 0.315 |
Kurtosis: | 3.393 | Cond. No. | 304. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.488 |
Model: | OLS | Adj. R-squared: | 0.403 |
Method: | Least Squares | F-statistic: | 5.729 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0179 |
Time: | 05:01:48 | Log-Likelihood: | -70.273 |
No. Observations: | 15 | AIC: | 146.5 |
Df Residuals: | 12 | BIC: | 148.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -37.8141 | 109.679 | -0.345 | 0.736 | -276.784 201.156 |
C(dose)[T.1] | 48.6176 | 15.175 | 3.204 | 0.008 | 15.555 81.681 |
expression | 13.7760 | 14.283 | 0.964 | 0.354 | -17.345 44.897 |
Omnibus: | 2.967 | Durbin-Watson: | 0.817 |
Prob(Omnibus): | 0.227 | Jarque-Bera (JB): | 1.630 |
Skew: | -0.808 | Prob(JB): | 0.443 |
Kurtosis: | 3.015 | Cond. No. | 114. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:01:48 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.051 |
Model: | OLS | Adj. R-squared: | -0.022 |
Method: | Least Squares | F-statistic: | 0.6963 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.419 |
Time: | 05:01:48 | Log-Likelihood: | -74.909 |
No. Observations: | 15 | AIC: | 153.8 |
Df Residuals: | 13 | BIC: | 155.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -25.7511 | 143.451 | -0.180 | 0.860 | -335.658 284.156 |
expression | 15.5857 | 18.678 | 0.834 | 0.419 | -24.765 55.937 |
Omnibus: | 2.767 | Durbin-Watson: | 1.594 |
Prob(Omnibus): | 0.251 | Jarque-Bera (JB): | 1.347 |
Skew: | 0.384 | Prob(JB): | 0.510 |
Kurtosis: | 1.749 | Cond. No. | 113. |