AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.902 0.183 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.688
Model: OLS Adj. R-squared: 0.639
Method: Least Squares F-statistic: 13.97
Date: Thu, 21 Nov 2024 Prob (F-statistic): 4.77e-05
Time: 04:33:37 Log-Likelihood: -99.706
No. Observations: 23 AIC: 207.4
Df Residuals: 19 BIC: 212.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 38.5164 39.211 0.982 0.338 -43.553 120.585
C(dose)[T.1] 10.7883 55.734 0.194 0.849 -105.864 127.440
expression 3.0248 7.473 0.405 0.690 -12.617 18.667
expression:C(dose)[T.1] 7.4013 10.243 0.723 0.479 -14.038 28.840
Omnibus: 0.098 Durbin-Watson: 1.835
Prob(Omnibus): 0.952 Jarque-Bera (JB): 0.303
Skew: 0.095 Prob(JB): 0.859
Kurtosis: 2.471 Cond. No. 97.3

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.680
Model: OLS Adj. R-squared: 0.647
Method: Least Squares F-statistic: 21.21
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.14e-05
Time: 04:33:37 Log-Likelihood: -100.02
No. Observations: 23 AIC: 206.0
Df Residuals: 20 BIC: 209.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 18.0782 26.828 0.674 0.508 -37.885 74.041
C(dose)[T.1] 50.5627 8.618 5.867 0.000 32.585 68.540
expression 6.9646 5.049 1.379 0.183 -3.568 17.498
Omnibus: 0.185 Durbin-Watson: 1.852
Prob(Omnibus): 0.912 Jarque-Bera (JB): 0.261
Skew: 0.181 Prob(JB): 0.877
Kurtosis: 2.624 Cond. No. 36.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:33:37 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.128
Model: OLS Adj. R-squared: 0.086
Method: Least Squares F-statistic: 3.083
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0937
Time: 04:33:37 Log-Likelihood: -111.53
No. Observations: 23 AIC: 227.1
Df Residuals: 21 BIC: 229.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 5.0744 43.041 0.118 0.907 -84.434 94.582
expression 13.8788 7.904 1.756 0.094 -2.559 30.316
Omnibus: 4.977 Durbin-Watson: 2.010
Prob(Omnibus): 0.083 Jarque-Bera (JB): 1.728
Skew: 0.203 Prob(JB): 0.422
Kurtosis: 1.720 Cond. No. 35.9

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.045 0.836 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.452
Model: OLS Adj. R-squared: 0.302
Method: Least Squares F-statistic: 3.019
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0757
Time: 04:33:37 Log-Likelihood: -70.794
No. Observations: 15 AIC: 149.6
Df Residuals: 11 BIC: 152.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 85.8378 78.204 1.098 0.296 -86.289 257.965
C(dose)[T.1] 30.1248 140.788 0.214 0.834 -279.748 339.998
expression -2.9135 12.231 -0.238 0.816 -29.834 24.007
expression:C(dose)[T.1] 3.0321 24.183 0.125 0.902 -50.195 56.259
Omnibus: 2.554 Durbin-Watson: 0.854
Prob(Omnibus): 0.279 Jarque-Bera (JB): 1.793
Skew: -0.820 Prob(JB): 0.408
Kurtosis: 2.574 Cond. No. 126.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.451
Model: OLS Adj. R-squared: 0.359
Method: Least Squares F-statistic: 4.925
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0274
Time: 04:33:37 Log-Likelihood: -70.805
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 80.9372 64.899 1.247 0.236 -60.465 222.340
C(dose)[T.1] 47.6298 17.369 2.742 0.018 9.785 85.474
expression -2.1379 10.109 -0.211 0.836 -24.164 19.888
Omnibus: 2.235 Durbin-Watson: 0.858
Prob(Omnibus): 0.327 Jarque-Bera (JB): 1.635
Skew: -0.766 Prob(JB): 0.442
Kurtosis: 2.482 Cond. No. 51.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:33:37 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.107
Model: OLS Adj. R-squared: 0.038
Method: Least Squares F-statistic: 1.553
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.235
Time: 04:33:37 Log-Likelihood: -74.454
No. Observations: 15 AIC: 152.9
Df Residuals: 13 BIC: 154.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 176.4246 67.108 2.629 0.021 31.447 321.402
expression -13.9611 11.204 -1.246 0.235 -38.167 10.245
Omnibus: 0.554 Durbin-Watson: 1.469
Prob(Omnibus): 0.758 Jarque-Bera (JB): 0.584
Skew: 0.165 Prob(JB): 0.747
Kurtosis: 2.092 Cond. No. 43.0