AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.071 | 0.793 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.595 |
Method: | Least Squares | F-statistic: | 11.78 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.000138 |
Time: | 22:55:51 | Log-Likelihood: | -101.02 |
No. Observations: | 23 | AIC: | 210.0 |
Df Residuals: | 19 | BIC: | 214.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 90.4873 | 455.466 | 0.199 | 0.845 | -862.815 1043.789 |
C(dose)[T.1] | 56.7986 | 483.094 | 0.118 | 0.908 | -954.330 1067.927 |
expression | -4.4020 | 55.260 | -0.080 | 0.937 | -120.063 111.259 |
expression:C(dose)[T.1] | -0.3555 | 58.521 | -0.006 | 0.995 | -122.842 122.131 |
Omnibus: | 0.231 | Durbin-Watson: | 1.852 |
Prob(Omnibus): | 0.891 | Jarque-Bera (JB): | 0.427 |
Skew: | 0.079 | Prob(JB): | 0.808 |
Kurtosis: | 2.352 | Cond. No. | 1.40e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.60 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.74e-05 |
Time: | 22:55:52 | Log-Likelihood: | -101.02 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 93.0994 | 146.230 | 0.637 | 0.532 | -211.932 398.130 |
C(dose)[T.1] | 53.8648 | 8.976 | 6.001 | 0.000 | 35.141 72.588 |
expression | -4.7190 | 17.728 | -0.266 | 0.793 | -41.699 32.261 |
Omnibus: | 0.232 | Durbin-Watson: | 1.850 |
Prob(Omnibus): | 0.891 | Jarque-Bera (JB): | 0.427 |
Skew: | 0.080 | Prob(JB): | 0.808 |
Kurtosis: | 2.352 | Cond. No. | 282. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:55:52 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.021 |
Model: | OLS | Adj. R-squared: | -0.026 |
Method: | Least Squares | F-statistic: | 0.4421 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.513 |
Time: | 22:55:52 | Log-Likelihood: | -112.87 |
No. Observations: | 23 | AIC: | 229.7 |
Df Residuals: | 21 | BIC: | 232.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -76.0227 | 234.341 | -0.324 | 0.749 | -563.362 411.317 |
expression | 18.7754 | 28.238 | 0.665 | 0.513 | -39.949 77.500 |
Omnibus: | 2.760 | Durbin-Watson: | 2.455 |
Prob(Omnibus): | 0.252 | Jarque-Bera (JB): | 1.525 |
Skew: | 0.333 | Prob(JB): | 0.467 |
Kurtosis: | 1.928 | Cond. No. | 276. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.557 | 0.470 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.478 |
Model: | OLS | Adj. R-squared: | 0.336 |
Method: | Least Squares | F-statistic: | 3.358 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0589 |
Time: | 22:55:52 | Log-Likelihood: | -70.424 |
No. Observations: | 15 | AIC: | 148.8 |
Df Residuals: | 11 | BIC: | 151.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 142.8972 | 261.803 | 0.546 | 0.596 | -433.327 719.121 |
C(dose)[T.1] | 166.2680 | 371.684 | 0.447 | 0.663 | -651.802 984.338 |
expression | -8.6326 | 29.917 | -0.289 | 0.778 | -74.479 57.214 |
expression:C(dose)[T.1] | -13.6346 | 42.713 | -0.319 | 0.756 | -107.646 80.377 |
Omnibus: | 2.171 | Durbin-Watson: | 0.853 |
Prob(Omnibus): | 0.338 | Jarque-Bera (JB): | 1.518 |
Skew: | -0.591 | Prob(JB): | 0.468 |
Kurtosis: | 1.983 | Cond. No. | 543. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.473 |
Model: | OLS | Adj. R-squared: | 0.385 |
Method: | Least Squares | F-statistic: | 5.390 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0214 |
Time: | 22:55:52 | Log-Likelihood: | -70.493 |
No. Observations: | 15 | AIC: | 147.0 |
Df Residuals: | 12 | BIC: | 149.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 201.3729 | 179.903 | 1.119 | 0.285 | -190.601 593.347 |
C(dose)[T.1] | 47.7333 | 15.511 | 3.077 | 0.010 | 13.937 81.530 |
expression | -15.3214 | 20.538 | -0.746 | 0.470 | -60.070 29.428 |
Omnibus: | 2.188 | Durbin-Watson: | 0.929 |
Prob(Omnibus): | 0.335 | Jarque-Bera (JB): | 1.626 |
Skew: | -0.659 | Prob(JB): | 0.444 |
Kurtosis: | 2.071 | Cond. No. | 207. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:55:52 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.057 |
Model: | OLS | Adj. R-squared: | -0.015 |
Method: | Least Squares | F-statistic: | 0.7928 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.389 |
Time: | 22:55:52 | Log-Likelihood: | -74.856 |
No. Observations: | 15 | AIC: | 153.7 |
Df Residuals: | 13 | BIC: | 155.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 296.2878 | 227.773 | 1.301 | 0.216 | -195.785 788.361 |
expression | -23.3129 | 26.182 | -0.890 | 0.389 | -79.876 33.250 |
Omnibus: | 0.253 | Durbin-Watson: | 1.486 |
Prob(Omnibus): | 0.881 | Jarque-Bera (JB): | 0.428 |
Skew: | 0.102 | Prob(JB): | 0.807 |
Kurtosis: | 2.198 | Cond. No. | 204. |