AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.166 | 0.688 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.658 |
Model: | OLS | Adj. R-squared: | 0.604 |
Method: | Least Squares | F-statistic: | 12.18 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000112 |
Time: | 04:46:41 | Log-Likelihood: | -100.77 |
No. Observations: | 23 | AIC: | 209.5 |
Df Residuals: | 19 | BIC: | 214.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 56.4940 | 59.198 | 0.954 | 0.352 | -67.409 180.398 |
C(dose)[T.1] | 116.4062 | 110.474 | 1.054 | 0.305 | -114.819 347.632 |
expression | -0.4366 | 11.248 | -0.039 | 0.969 | -23.978 23.105 |
expression:C(dose)[T.1] | -12.4417 | 21.511 | -0.578 | 0.570 | -57.465 32.582 |
Omnibus: | 0.883 | Durbin-Watson: | 1.893 |
Prob(Omnibus): | 0.643 | Jarque-Bera (JB): | 0.753 |
Skew: | 0.102 | Prob(JB): | 0.686 |
Kurtosis: | 2.137 | Cond. No. | 158. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.617 |
Method: | Least Squares | F-statistic: | 18.73 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.61e-05 |
Time: | 04:46:41 | Log-Likelihood: | -100.97 |
No. Observations: | 23 | AIC: | 207.9 |
Df Residuals: | 20 | BIC: | 211.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 74.3000 | 49.715 | 1.495 | 0.151 | -29.404 178.004 |
C(dose)[T.1] | 52.7229 | 8.863 | 5.949 | 0.000 | 34.235 71.211 |
expression | -3.8381 | 9.427 | -0.407 | 0.688 | -23.502 15.826 |
Omnibus: | 0.498 | Durbin-Watson: | 1.916 |
Prob(Omnibus): | 0.780 | Jarque-Bera (JB): | 0.576 |
Skew: | 0.028 | Prob(JB): | 0.750 |
Kurtosis: | 2.227 | Cond. No. | 61.5 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:46:41 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.036 |
Model: | OLS | Adj. R-squared: | -0.010 |
Method: | Least Squares | F-statistic: | 0.7869 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.385 |
Time: | 04:46:41 | Log-Likelihood: | -112.68 |
No. Observations: | 23 | AIC: | 229.4 |
Df Residuals: | 21 | BIC: | 231.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 148.7466 | 78.138 | 1.904 | 0.071 | -13.751 311.244 |
expression | -13.3822 | 15.086 | -0.887 | 0.385 | -44.755 17.990 |
Omnibus: | 1.820 | Durbin-Watson: | 2.656 |
Prob(Omnibus): | 0.402 | Jarque-Bera (JB): | 1.098 |
Skew: | 0.184 | Prob(JB): | 0.577 |
Kurtosis: | 1.994 | Cond. No. | 59.2 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.064 | 0.804 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.452 |
Model: | OLS | Adj. R-squared: | 0.302 |
Method: | Least Squares | F-statistic: | 3.023 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0755 |
Time: | 04:46:41 | Log-Likelihood: | -70.791 |
No. Observations: | 15 | AIC: | 149.6 |
Df Residuals: | 11 | BIC: | 152.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 30.7479 | 157.511 | 0.195 | 0.849 | -315.931 377.427 |
C(dose)[T.1] | 66.0686 | 276.009 | 0.239 | 0.815 | -541.422 673.560 |
expression | 6.6878 | 28.635 | 0.234 | 0.820 | -56.338 69.713 |
expression:C(dose)[T.1] | -2.9773 | 51.168 | -0.058 | 0.955 | -115.596 109.642 |
Omnibus: | 2.780 | Durbin-Watson: | 0.780 |
Prob(Omnibus): | 0.249 | Jarque-Bera (JB): | 1.984 |
Skew: | -0.861 | Prob(JB): | 0.371 |
Kurtosis: | 2.542 | Cond. No. | 232. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.452 |
Model: | OLS | Adj. R-squared: | 0.360 |
Method: | Least Squares | F-statistic: | 4.943 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0272 |
Time: | 04:46:41 | Log-Likelihood: | -70.793 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 35.8622 | 125.162 | 0.287 | 0.779 | -236.842 308.566 |
C(dose)[T.1] | 50.0380 | 16.046 | 3.118 | 0.009 | 15.078 84.998 |
expression | 5.7554 | 22.724 | 0.253 | 0.804 | -43.757 55.267 |
Omnibus: | 2.653 | Durbin-Watson: | 0.772 |
Prob(Omnibus): | 0.265 | Jarque-Bera (JB): | 1.933 |
Skew: | -0.841 | Prob(JB): | 0.380 |
Kurtosis: | 2.486 | Cond. No. | 89.9 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:46:41 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.007 |
Model: | OLS | Adj. R-squared: | -0.069 |
Method: | Least Squares | F-statistic: | 0.09634 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.761 |
Time: | 04:46:41 | Log-Likelihood: | -75.245 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 141.8965 | 155.716 | 0.911 | 0.379 | -194.507 478.300 |
expression | -8.9204 | 28.740 | -0.310 | 0.761 | -71.008 53.168 |
Omnibus: | 0.830 | Durbin-Watson: | 1.600 |
Prob(Omnibus): | 0.661 | Jarque-Bera (JB): | 0.656 |
Skew: | 0.025 | Prob(JB): | 0.720 |
Kurtosis: | 1.976 | Cond. No. | 86.2 |