AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
5.695 0.027 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.727
Model: OLS Adj. R-squared: 0.684
Method: Least Squares F-statistic: 16.86
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.38e-05
Time: 05:10:30 Log-Likelihood: -98.175
No. Observations: 23 AIC: 204.4
Df Residuals: 19 BIC: 208.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 138.5067 62.284 2.224 0.038 8.144 268.869
C(dose)[T.1] 55.8989 77.598 0.720 0.480 -106.515 218.313
expression -16.3412 12.027 -1.359 0.190 -41.514 8.831
expression:C(dose)[T.1] -1.5550 15.303 -0.102 0.920 -33.584 30.474
Omnibus: 0.269 Durbin-Watson: 1.832
Prob(Omnibus): 0.874 Jarque-Bera (JB): 0.451
Skew: 0.146 Prob(JB): 0.798
Kurtosis: 2.380 Cond. No. 140.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.727
Model: OLS Adj. R-squared: 0.700
Method: Least Squares F-statistic: 26.61
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.31e-06
Time: 05:10:30 Log-Likelihood: -98.181
No. Observations: 23 AIC: 202.4
Df Residuals: 20 BIC: 205.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 143.4613 37.782 3.797 0.001 64.649 222.274
C(dose)[T.1] 48.0589 8.047 5.972 0.000 31.273 64.845
expression -17.3017 7.250 -2.386 0.027 -32.425 -2.178
Omnibus: 0.239 Durbin-Watson: 1.836
Prob(Omnibus): 0.887 Jarque-Bera (JB): 0.430
Skew: 0.120 Prob(JB): 0.806
Kurtosis: 2.374 Cond. No. 51.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:10:30 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.240
Model: OLS Adj. R-squared: 0.203
Method: Least Squares F-statistic: 6.620
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0177
Time: 05:10:30 Log-Likelihood: -109.95
No. Observations: 23 AIC: 223.9
Df Residuals: 21 BIC: 226.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 226.1041 57.240 3.950 0.001 107.068 345.141
expression -29.2030 11.350 -2.573 0.018 -52.806 -5.600
Omnibus: 0.783 Durbin-Watson: 2.444
Prob(Omnibus): 0.676 Jarque-Bera (JB): 0.797
Skew: 0.362 Prob(JB): 0.671
Kurtosis: 2.446 Cond. No. 47.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.090 0.769 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.513
Model: OLS Adj. R-squared: 0.381
Method: Least Squares F-statistic: 3.869
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0411
Time: 05:10:30 Log-Likelihood: -69.898
No. Observations: 15 AIC: 147.8
Df Residuals: 11 BIC: 150.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 104.3238 86.527 1.206 0.253 -86.121 294.769
C(dose)[T.1] -140.7444 161.102 -0.874 0.401 -495.327 213.838
expression -7.0012 16.279 -0.430 0.675 -42.832 28.829
expression:C(dose)[T.1] 32.8469 28.080 1.170 0.267 -28.957 94.651
Omnibus: 1.040 Durbin-Watson: 0.944
Prob(Omnibus): 0.594 Jarque-Bera (JB): 0.914
Skew: -0.435 Prob(JB): 0.633
Kurtosis: 2.161 Cond. No. 152.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.453
Model: OLS Adj. R-squared: 0.362
Method: Least Squares F-statistic: 4.966
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0268
Time: 05:10:30 Log-Likelihood: -70.777
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 46.1454 71.883 0.642 0.533 -110.475 202.766
C(dose)[T.1] 46.5644 17.970 2.591 0.024 7.412 85.717
expression 4.0387 13.466 0.300 0.769 -25.302 33.379
Omnibus: 2.283 Durbin-Watson: 0.797
Prob(Omnibus): 0.319 Jarque-Bera (JB): 1.650
Skew: -0.774 Prob(JB): 0.438
Kurtosis: 2.509 Cond. No. 54.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:10:30 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.147
Model: OLS Adj. R-squared: 0.081
Method: Least Squares F-statistic: 2.235
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.159
Time: 05:10:30 Log-Likelihood: -74.110
No. Observations: 15 AIC: 152.2
Df Residuals: 13 BIC: 153.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -24.7512 79.756 -0.310 0.761 -197.054 147.552
expression 21.0806 14.099 1.495 0.159 -9.379 51.540
Omnibus: 0.160 Durbin-Watson: 1.307
Prob(Omnibus): 0.923 Jarque-Bera (JB): 0.303
Skew: -0.194 Prob(JB): 0.859
Kurtosis: 2.421 Cond. No. 49.5