AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.000 | 0.985 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.665 |
Model: | OLS | Adj. R-squared: | 0.612 |
Method: | Least Squares | F-statistic: | 12.56 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.31e-05 |
Time: | 04:28:10 | Log-Likelihood: | -100.53 |
No. Observations: | 23 | AIC: | 209.1 |
Df Residuals: | 19 | BIC: | 213.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 104.7421 | 84.979 | 1.233 | 0.233 | -73.121 282.605 |
C(dose)[T.1] | -83.7131 | 145.362 | -0.576 | 0.571 | -387.960 220.534 |
expression | -6.7537 | 11.328 | -0.596 | 0.558 | -30.464 16.956 |
expression:C(dose)[T.1] | 17.4434 | 18.440 | 0.946 | 0.356 | -21.153 56.039 |
Omnibus: | 0.378 | Durbin-Watson: | 1.824 |
Prob(Omnibus): | 0.828 | Jarque-Bera (JB): | 0.527 |
Skew: | 0.197 | Prob(JB): | 0.768 |
Kurtosis: | 2.372 | Cond. No. | 323. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 04:28:10 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 55.4876 | 66.981 | 0.828 | 0.417 | -84.232 195.207 |
C(dose)[T.1] | 53.4416 | 10.324 | 5.176 | 0.000 | 31.906 74.977 |
expression | -0.1710 | 8.915 | -0.019 | 0.985 | -18.767 18.425 |
Omnibus: | 0.323 | Durbin-Watson: | 1.886 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.486 |
Skew: | 0.058 | Prob(JB): | 0.784 |
Kurtosis: | 2.298 | Cond. No. | 122. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:28:10 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.179 |
Model: | OLS | Adj. R-squared: | 0.140 |
Method: | Least Squares | F-statistic: | 4.575 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0443 |
Time: | 04:28:10 | Log-Likelihood: | -110.84 |
No. Observations: | 23 | AIC: | 225.7 |
Df Residuals: | 21 | BIC: | 227.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -108.2743 | 88.131 | -1.229 | 0.233 | -291.552 75.003 |
expression | 24.1801 | 11.304 | 2.139 | 0.044 | 0.671 47.689 |
Omnibus: | 0.118 | Durbin-Watson: | 2.401 |
Prob(Omnibus): | 0.943 | Jarque-Bera (JB): | 0.339 |
Skew: | 0.052 | Prob(JB): | 0.844 |
Kurtosis: | 2.415 | Cond. No. | 107. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.035 | 0.856 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.518 |
Model: | OLS | Adj. R-squared: | 0.386 |
Method: | Least Squares | F-statistic: | 3.937 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0393 |
Time: | 04:28:10 | Log-Likelihood: | -69.830 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 11 | BIC: | 150.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 168.4326 | 112.014 | 1.504 | 0.161 | -78.108 414.973 |
C(dose)[T.1] | -183.4089 | 188.913 | -0.971 | 0.352 | -599.204 232.387 |
expression | -14.8335 | 16.368 | -0.906 | 0.384 | -50.858 21.191 |
expression:C(dose)[T.1] | 33.3003 | 26.859 | 1.240 | 0.241 | -25.815 92.416 |
Omnibus: | 1.299 | Durbin-Watson: | 1.139 |
Prob(Omnibus): | 0.522 | Jarque-Bera (JB): | 1.088 |
Skew: | -0.525 | Prob(JB): | 0.580 |
Kurtosis: | 2.201 | Cond. No. | 222. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.450 |
Model: | OLS | Adj. R-squared: | 0.359 |
Method: | Least Squares | F-statistic: | 4.916 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0276 |
Time: | 04:28:10 | Log-Likelihood: | -70.811 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 84.2271 | 91.047 | 0.925 | 0.373 | -114.148 282.602 |
C(dose)[T.1] | 49.9790 | 16.271 | 3.072 | 0.010 | 14.529 85.430 |
expression | -2.4670 | 13.265 | -0.186 | 0.856 | -31.368 26.434 |
Omnibus: | 2.829 | Durbin-Watson: | 0.887 |
Prob(Omnibus): | 0.243 | Jarque-Bera (JB): | 1.864 |
Skew: | -0.851 | Prob(JB): | 0.394 |
Kurtosis: | 2.710 | Cond. No. | 83.3 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:28:10 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.018 |
Model: | OLS | Adj. R-squared: | -0.057 |
Method: | Least Squares | F-statistic: | 0.2406 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.632 |
Time: | 04:28:10 | Log-Likelihood: | -75.163 |
No. Observations: | 15 | AIC: | 154.3 |
Df Residuals: | 13 | BIC: | 155.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 37.3477 | 115.259 | 0.324 | 0.751 | -211.654 286.350 |
expression | 8.0705 | 16.453 | 0.491 | 0.632 | -27.475 43.616 |
Omnibus: | 0.207 | Durbin-Watson: | 1.536 |
Prob(Omnibus): | 0.902 | Jarque-Bera (JB): | 0.399 |
Skew: | -0.107 | Prob(JB): | 0.819 |
Kurtosis: | 2.230 | Cond. No. | 81.8 |