AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.162 0.294 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.692
Model: OLS Adj. R-squared: 0.643
Method: Least Squares F-statistic: 14.24
Date: Thu, 21 Nov 2024 Prob (F-statistic): 4.23e-05
Time: 04:44:10 Log-Likelihood: -99.558
No. Observations: 23 AIC: 207.1
Df Residuals: 19 BIC: 211.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 2.2577 89.619 0.025 0.980 -185.317 189.833
C(dose)[T.1] 175.7080 101.030 1.739 0.098 -35.750 387.166
expression 7.8973 13.595 0.581 0.568 -20.557 36.351
expression:C(dose)[T.1] -18.5074 15.276 -1.212 0.241 -50.480 13.466
Omnibus: 3.390 Durbin-Watson: 1.994
Prob(Omnibus): 0.184 Jarque-Bera (JB): 1.493
Skew: 0.224 Prob(JB): 0.474
Kurtosis: 1.835 Cond. No. 241.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.668
Model: OLS Adj. R-squared: 0.635
Method: Least Squares F-statistic: 20.15
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.61e-05
Time: 04:44:10 Log-Likelihood: -100.41
No. Observations: 23 AIC: 206.8
Df Residuals: 20 BIC: 210.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 98.6788 41.681 2.367 0.028 11.733 185.624
C(dose)[T.1] 53.7348 8.534 6.297 0.000 35.934 71.536
expression -6.7602 6.272 -1.078 0.294 -19.844 6.324
Omnibus: 1.433 Durbin-Watson: 2.014
Prob(Omnibus): 0.489 Jarque-Bera (JB): 1.102
Skew: 0.302 Prob(JB): 0.576
Kurtosis: 2.114 Cond. No. 66.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:44:10 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.011
Model: OLS Adj. R-squared: -0.036
Method: Least Squares F-statistic: 0.2288
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.637
Time: 04:44:10 Log-Likelihood: -112.98
No. Observations: 23 AIC: 230.0
Df Residuals: 21 BIC: 232.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 113.0953 70.142 1.612 0.122 -32.772 258.963
expression -5.0523 10.561 -0.478 0.637 -27.016 16.911
Omnibus: 3.411 Durbin-Watson: 2.578
Prob(Omnibus): 0.182 Jarque-Bera (JB): 1.518
Skew: 0.240 Prob(JB): 0.468
Kurtosis: 1.836 Cond. No. 66.4

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.003 0.959 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.452
Model: OLS Adj. R-squared: 0.303
Method: Least Squares F-statistic: 3.026
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0754
Time: 04:44:10 Log-Likelihood: -70.787
No. Observations: 15 AIC: 149.6
Df Residuals: 11 BIC: 152.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 120.7519 225.453 0.536 0.603 -375.467 616.971
C(dose)[T.1] -20.8914 275.978 -0.076 0.941 -628.315 586.532
expression -7.0078 29.587 -0.237 0.817 -72.129 58.114
expression:C(dose)[T.1] 9.2214 36.262 0.254 0.804 -70.591 89.034
Omnibus: 2.457 Durbin-Watson: 0.859
Prob(Omnibus): 0.293 Jarque-Bera (JB): 1.735
Skew: -0.803 Prob(JB): 0.420
Kurtosis: 2.560 Cond. No. 374.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.887
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0280
Time: 04:44:11 Log-Likelihood: -70.831
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 74.0384 125.512 0.590 0.566 -199.430 347.506
C(dose)[T.1] 49.1654 15.749 3.122 0.009 14.852 83.479
expression -0.8687 16.426 -0.053 0.959 -36.657 34.920
Omnibus: 2.727 Durbin-Watson: 0.806
Prob(Omnibus): 0.256 Jarque-Bera (JB): 1.882
Skew: -0.846 Prob(JB): 0.390
Kurtosis: 2.616 Cond. No. 124.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:44:11 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.076
Method: Least Squares F-statistic: 0.01714
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.898
Time: 04:44:11 Log-Likelihood: -75.290
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 114.7623 161.453 0.711 0.490 -234.036 463.561
expression -2.7794 21.229 -0.131 0.898 -48.643 43.084
Omnibus: 0.739 Durbin-Watson: 1.614
Prob(Omnibus): 0.691 Jarque-Bera (JB): 0.629
Skew: 0.049 Prob(JB): 0.730
Kurtosis: 2.002 Cond. No. 123.