AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.726 | 0.204 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.708 |
Model: | OLS | Adj. R-squared: | 0.661 |
Method: | Least Squares | F-statistic: | 15.32 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.62e-05 |
Time: | 04:08:22 | Log-Likelihood: | -98.967 |
No. Observations: | 23 | AIC: | 205.9 |
Df Residuals: | 19 | BIC: | 210.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 45.2096 | 291.888 | 0.155 | 0.879 | -565.719 656.139 |
C(dose)[T.1] | 651.0819 | 420.149 | 1.550 | 0.138 | -228.301 1530.464 |
expression | 1.0036 | 32.548 | 0.031 | 0.976 | -67.120 69.128 |
expression:C(dose)[T.1] | -65.3605 | 46.371 | -1.410 | 0.175 | -162.415 31.694 |
Omnibus: | 0.276 | Durbin-Watson: | 1.418 |
Prob(Omnibus): | 0.871 | Jarque-Bera (JB): | 0.458 |
Skew: | 0.115 | Prob(JB): | 0.795 |
Kurtosis: | 2.348 | Cond. No. | 1.21e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.677 |
Model: | OLS | Adj. R-squared: | 0.645 |
Method: | Least Squares | F-statistic: | 20.95 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.24e-05 |
Time: | 04:08:22 | Log-Likelihood: | -100.11 |
No. Observations: | 23 | AIC: | 206.2 |
Df Residuals: | 20 | BIC: | 209.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 333.9389 | 213.007 | 1.568 | 0.133 | -110.386 778.264 |
C(dose)[T.1] | 59.0130 | 9.459 | 6.239 | 0.000 | 39.283 78.743 |
expression | -31.1983 | 23.748 | -1.314 | 0.204 | -80.735 18.339 |
Omnibus: | 2.690 | Durbin-Watson: | 1.791 |
Prob(Omnibus): | 0.261 | Jarque-Bera (JB): | 1.218 |
Skew: | -0.012 | Prob(JB): | 0.544 |
Kurtosis: | 1.873 | Cond. No. | 465. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:08:22 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.048 |
Model: | OLS | Adj. R-squared: | 0.003 |
Method: | Least Squares | F-statistic: | 1.063 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.314 |
Time: | 04:08:22 | Log-Likelihood: | -112.54 |
No. Observations: | 23 | AIC: | 229.1 |
Df Residuals: | 21 | BIC: | 231.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -250.5254 | 320.451 | -0.782 | 0.443 | -916.940 415.889 |
expression | 36.4779 | 35.388 | 1.031 | 0.314 | -37.115 110.071 |
Omnibus: | 1.796 | Durbin-Watson: | 2.399 |
Prob(Omnibus): | 0.407 | Jarque-Bera (JB): | 1.415 |
Skew: | 0.431 | Prob(JB): | 0.493 |
Kurtosis: | 2.145 | Cond. No. | 417. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.353 | 0.563 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.489 |
Model: | OLS | Adj. R-squared: | 0.350 |
Method: | Least Squares | F-statistic: | 3.513 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0527 |
Time: | 04:08:22 | Log-Likelihood: | -70.260 |
No. Observations: | 15 | AIC: | 148.5 |
Df Residuals: | 11 | BIC: | 151.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 668.1327 | 643.577 | 1.038 | 0.321 | -748.371 2084.637 |
C(dose)[T.1] | -570.9591 | 848.407 | -0.673 | 0.515 | -2438.289 1296.371 |
expression | -67.1183 | 71.897 | -0.934 | 0.371 | -225.363 91.126 |
expression:C(dose)[T.1] | 69.2988 | 94.910 | 0.730 | 0.481 | -139.597 278.195 |
Omnibus: | 1.743 | Durbin-Watson: | 0.685 |
Prob(Omnibus): | 0.418 | Jarque-Bera (JB): | 1.266 |
Skew: | -0.669 | Prob(JB): | 0.531 |
Kurtosis: | 2.518 | Cond. No. | 1.34e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.465 |
Model: | OLS | Adj. R-squared: | 0.375 |
Method: | Least Squares | F-statistic: | 5.205 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0236 |
Time: | 04:08:22 | Log-Likelihood: | -70.615 |
No. Observations: | 15 | AIC: | 147.2 |
Df Residuals: | 12 | BIC: | 149.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 312.2222 | 411.965 | 0.758 | 0.463 | -585.373 1209.818 |
C(dose)[T.1] | 48.3969 | 15.571 | 3.108 | 0.009 | 14.470 82.323 |
expression | -27.3515 | 46.013 | -0.594 | 0.563 | -127.604 72.901 |
Omnibus: | 3.671 | Durbin-Watson: | 0.642 |
Prob(Omnibus): | 0.160 | Jarque-Bera (JB): | 2.178 |
Skew: | -0.933 | Prob(JB): | 0.337 |
Kurtosis: | 2.992 | Cond. No. | 482. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:08:22 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.033 |
Model: | OLS | Adj. R-squared: | -0.041 |
Method: | Least Squares | F-statistic: | 0.4503 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.514 |
Time: | 04:08:22 | Log-Likelihood: | -75.045 |
No. Observations: | 15 | AIC: | 154.1 |
Df Residuals: | 13 | BIC: | 155.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 448.4028 | 528.753 | 0.848 | 0.412 | -693.898 1590.703 |
expression | -39.7048 | 59.172 | -0.671 | 0.514 | -167.537 88.127 |
Omnibus: | 2.622 | Durbin-Watson: | 1.585 |
Prob(Omnibus): | 0.270 | Jarque-Bera (JB): | 1.085 |
Skew: | 0.120 | Prob(JB): | 0.581 |
Kurtosis: | 1.704 | Cond. No. | 479. |