AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.026 | 0.873 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.656 |
Model: | OLS | Adj. R-squared: | 0.602 |
Method: | Least Squares | F-statistic: | 12.09 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000118 |
Time: | 05:15:18 | Log-Likelihood: | -100.83 |
No. Observations: | 23 | AIC: | 209.7 |
Df Residuals: | 19 | BIC: | 214.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 132.2839 | 138.637 | 0.954 | 0.352 | -157.887 422.455 |
C(dose)[T.1] | -57.1606 | 181.194 | -0.315 | 0.756 | -436.404 322.083 |
expression | -9.3616 | 16.607 | -0.564 | 0.580 | -44.120 25.397 |
expression:C(dose)[T.1] | 13.3812 | 22.008 | 0.608 | 0.550 | -32.682 59.444 |
Omnibus: | 0.388 | Durbin-Watson: | 1.746 |
Prob(Omnibus): | 0.824 | Jarque-Bera (JB): | 0.522 |
Skew: | 0.051 | Prob(JB): | 0.770 |
Kurtosis: | 2.269 | Cond. No. | 454. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.53 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.80e-05 |
Time: | 05:15:18 | Log-Likelihood: | -101.05 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 68.7408 | 89.647 | 0.767 | 0.452 | -118.259 255.740 |
C(dose)[T.1] | 52.8598 | 9.243 | 5.719 | 0.000 | 33.579 72.141 |
expression | -1.7425 | 10.724 | -0.162 | 0.873 | -24.113 20.628 |
Omnibus: | 0.306 | Durbin-Watson: | 1.861 |
Prob(Omnibus): | 0.858 | Jarque-Bera (JB): | 0.476 |
Skew: | 0.074 | Prob(JB): | 0.788 |
Kurtosis: | 2.311 | Cond. No. | 171. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:15:18 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.076 |
Model: | OLS | Adj. R-squared: | 0.032 |
Method: | Least Squares | F-statistic: | 1.738 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.202 |
Time: | 05:15:18 | Log-Likelihood: | -112.19 |
No. Observations: | 23 | AIC: | 228.4 |
Df Residuals: | 21 | BIC: | 230.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 254.0274 | 132.418 | 1.918 | 0.069 | -21.352 529.407 |
expression | -21.2341 | 16.109 | -1.318 | 0.202 | -54.734 12.266 |
Omnibus: | 1.649 | Durbin-Watson: | 2.435 |
Prob(Omnibus): | 0.438 | Jarque-Bera (JB): | 1.428 |
Skew: | 0.487 | Prob(JB): | 0.490 |
Kurtosis: | 2.264 | Cond. No. | 159. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
5.249 | 0.041 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.694 |
Model: | OLS | Adj. R-squared: | 0.610 |
Method: | Least Squares | F-statistic: | 8.299 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00363 |
Time: | 05:15:18 | Log-Likelihood: | -66.429 |
No. Observations: | 15 | AIC: | 140.9 |
Df Residuals: | 11 | BIC: | 143.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 437.3859 | 271.137 | 1.613 | 0.135 | -159.383 1034.155 |
C(dose)[T.1] | 990.6817 | 567.449 | 1.746 | 0.109 | -258.265 2239.629 |
expression | -41.3546 | 30.292 | -1.365 | 0.199 | -108.026 25.317 |
expression:C(dose)[T.1] | -105.7549 | 63.587 | -1.663 | 0.124 | -245.710 34.200 |
Omnibus: | 1.209 | Durbin-Watson: | 0.868 |
Prob(Omnibus): | 0.546 | Jarque-Bera (JB): | 0.936 |
Skew: | -0.553 | Prob(JB): | 0.626 |
Kurtosis: | 2.476 | Cond. No. | 1.00e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.617 |
Model: | OLS | Adj. R-squared: | 0.553 |
Method: | Least Squares | F-statistic: | 9.646 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00318 |
Time: | 05:15:18 | Log-Likelihood: | -68.112 |
No. Observations: | 15 | AIC: | 142.2 |
Df Residuals: | 12 | BIC: | 144.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 652.0873 | 255.376 | 2.553 | 0.025 | 95.671 1208.504 |
C(dose)[T.1] | 47.1547 | 13.158 | 3.584 | 0.004 | 18.485 75.825 |
expression | -65.3544 | 28.526 | -2.291 | 0.041 | -127.508 -3.201 |
Omnibus: | 1.276 | Durbin-Watson: | 1.210 |
Prob(Omnibus): | 0.528 | Jarque-Bera (JB): | 0.832 |
Skew: | -0.189 | Prob(JB): | 0.660 |
Kurtosis: | 1.910 | Cond. No. | 353. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:15:18 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.206 |
Model: | OLS | Adj. R-squared: | 0.145 |
Method: | Least Squares | F-statistic: | 3.375 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0892 |
Time: | 05:15:19 | Log-Likelihood: | -73.569 |
No. Observations: | 15 | AIC: | 151.1 |
Df Residuals: | 13 | BIC: | 152.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 739.0582 | 351.426 | 2.103 | 0.056 | -20.151 1498.267 |
expression | -72.2778 | 39.343 | -1.837 | 0.089 | -157.274 12.718 |
Omnibus: | 6.225 | Durbin-Watson: | 2.343 |
Prob(Omnibus): | 0.044 | Jarque-Bera (JB): | 1.617 |
Skew: | 0.217 | Prob(JB): | 0.445 |
Kurtosis: | 1.451 | Cond. No. | 351. |