AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.160 0.693 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.668
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 12.75
Date: Tue, 28 Jan 2025 Prob (F-statistic): 8.49e-05
Time: 18:58:06 Log-Likelihood: -100.42
No. Observations: 23 AIC: 208.8
Df Residuals: 19 BIC: 213.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -129.3849 208.809 -0.620 0.543 -566.428 307.658
C(dose)[T.1] 407.0961 365.879 1.113 0.280 -358.697 1172.890
expression 20.2565 23.029 0.880 0.390 -27.944 68.457
expression:C(dose)[T.1] -39.0644 40.405 -0.967 0.346 -123.633 45.504
Omnibus: 0.683 Durbin-Watson: 1.945
Prob(Omnibus): 0.711 Jarque-Bera (JB): 0.699
Skew: 0.176 Prob(JB): 0.705
Kurtosis: 2.222 Cond. No. 925.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.617
Method: Least Squares F-statistic: 18.72
Date: Tue, 28 Jan 2025 Prob (F-statistic): 2.62e-05
Time: 18:58:06 Log-Likelihood: -100.97
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -14.3690 171.328 -0.084 0.934 -371.752 343.014
C(dose)[T.1] 53.4568 8.740 6.116 0.000 35.225 71.688
expression 7.5664 18.891 0.401 0.693 -31.841 46.973
Omnibus: 0.101 Durbin-Watson: 1.947
Prob(Omnibus): 0.951 Jarque-Bera (JB): 0.311
Skew: 0.089 Prob(JB): 0.856
Kurtosis: 2.459 Cond. No. 361.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 28 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 18:58:06 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.01343
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.909
Time: 18:58:06 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 46.9570 282.791 0.166 0.870 -541.139 635.053
expression 3.6176 31.217 0.116 0.909 -61.302 68.537
Omnibus: 3.424 Durbin-Watson: 2.495
Prob(Omnibus): 0.180 Jarque-Bera (JB): 1.626
Skew: 0.309 Prob(JB): 0.444
Kurtosis: 1.853 Cond. No. 359.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
8.287 0.014 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.716
Model: OLS Adj. R-squared: 0.639
Method: Least Squares F-statistic: 9.264
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00240
Time: 18:58:06 Log-Likelihood: -65.848
No. Observations: 15 AIC: 139.7
Df Residuals: 11 BIC: 142.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -343.9303 340.395 -1.010 0.334 -1093.134 405.274
C(dose)[T.1] -539.7970 477.593 -1.130 0.282 -1590.972 511.378
expression 43.4092 35.909 1.209 0.252 -35.626 122.445
expression:C(dose)[T.1] 65.7931 51.245 1.284 0.226 -46.997 178.583
Omnibus: 1.298 Durbin-Watson: 2.044
Prob(Omnibus): 0.523 Jarque-Bera (JB): 0.424
Skew: 0.409 Prob(JB): 0.809
Kurtosis: 3.088 Cond. No. 1.01e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.674
Model: OLS Adj. R-squared: 0.620
Method: Least Squares F-statistic: 12.40
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00120
Time: 18:58:06 Log-Likelihood: -66.895
No. Observations: 15 AIC: 139.8
Df Residuals: 12 BIC: 141.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -650.0731 249.397 -2.607 0.023 -1193.463 -106.683
C(dose)[T.1] 73.1049 14.680 4.980 0.000 41.119 105.091
expression 75.7153 26.301 2.879 0.014 18.409 133.021
Omnibus: 0.514 Durbin-Watson: 1.525
Prob(Omnibus): 0.773 Jarque-Bera (JB): 0.588
Skew: 0.269 Prob(JB): 0.745
Kurtosis: 2.193 Cond. No. 390.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00629
Time: 18:58:06 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.077
Method: Least Squares F-statistic: 0.001967
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.965
Time: 18:58:06 Log-Likelihood: -75.299
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 78.6031 339.785 0.231 0.821 -655.458 812.664
expression 1.6184 36.489 0.044 0.965 -77.211 80.447
Omnibus: 0.588 Durbin-Watson: 1.641
Prob(Omnibus): 0.745 Jarque-Bera (JB): 0.576
Skew: 0.052 Prob(JB): 0.750
Kurtosis: 2.046 Cond. No. 315.