AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.076 | 0.786 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.653 |
Model: | OLS | Adj. R-squared: | 0.598 |
Method: | Least Squares | F-statistic: | 11.90 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000130 |
Time: | 04:31:03 | Log-Likelihood: | -100.95 |
No. Observations: | 23 | AIC: | 209.9 |
Df Residuals: | 19 | BIC: | 214.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 267.2841 | 486.554 | 0.549 | 0.589 | -751.086 1285.654 |
C(dose)[T.1] | -175.7128 | 654.983 | -0.268 | 0.791 | -1546.608 1195.182 |
expression | -19.3341 | 44.145 | -0.438 | 0.666 | -111.732 73.063 |
expression:C(dose)[T.1] | 20.8103 | 59.921 | 0.347 | 0.732 | -104.606 146.226 |
Omnibus: | 0.210 | Durbin-Watson: | 1.966 |
Prob(Omnibus): | 0.900 | Jarque-Bera (JB): | 0.413 |
Skew: | 0.030 | Prob(JB): | 0.814 |
Kurtosis: | 2.346 | Cond. No. | 2.13e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.60 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.73e-05 |
Time: | 04:31:03 | Log-Likelihood: | -101.02 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 142.8030 | 321.720 | 0.444 | 0.662 | -528.292 813.898 |
C(dose)[T.1] | 51.7297 | 10.520 | 4.917 | 0.000 | 29.785 73.675 |
expression | -8.0389 | 29.187 | -0.275 | 0.786 | -68.922 52.844 |
Omnibus: | 0.251 | Durbin-Watson: | 1.920 |
Prob(Omnibus): | 0.882 | Jarque-Bera (JB): | 0.440 |
Skew: | 0.050 | Prob(JB): | 0.802 |
Kurtosis: | 2.329 | Cond. No. | 812. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:31:03 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.228 |
Model: | OLS | Adj. R-squared: | 0.191 |
Method: | Least Squares | F-statistic: | 6.193 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0213 |
Time: | 04:31:03 | Log-Likelihood: | -110.13 |
No. Observations: | 23 | AIC: | 224.3 |
Df Residuals: | 21 | BIC: | 226.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 1037.3234 | 384.860 | 2.695 | 0.014 | 236.962 1837.685 |
expression | -87.6519 | 35.222 | -2.489 | 0.021 | -160.901 -14.403 |
Omnibus: | 1.479 | Durbin-Watson: | 2.397 |
Prob(Omnibus): | 0.477 | Jarque-Bera (JB): | 0.983 |
Skew: | 0.160 | Prob(JB): | 0.612 |
Kurtosis: | 2.039 | Cond. No. | 669. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.196 | 0.666 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.587 |
Model: | OLS | Adj. R-squared: | 0.475 |
Method: | Least Squares | F-statistic: | 5.219 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0175 |
Time: | 04:31:03 | Log-Likelihood: | -68.661 |
No. Observations: | 15 | AIC: | 145.3 |
Df Residuals: | 11 | BIC: | 148.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 1361.6097 | 1162.183 | 1.172 | 0.266 | -1196.338 3919.557 |
C(dose)[T.1] | -2763.6681 | 1513.471 | -1.826 | 0.095 | -6094.795 567.459 |
expression | -109.7334 | 98.537 | -1.114 | 0.289 | -326.613 107.146 |
expression:C(dose)[T.1] | 238.9590 | 128.508 | 1.859 | 0.090 | -43.886 521.804 |
Omnibus: | 0.780 | Durbin-Watson: | 1.327 |
Prob(Omnibus): | 0.677 | Jarque-Bera (JB): | 0.679 |
Skew: | -0.440 | Prob(JB): | 0.712 |
Kurtosis: | 2.442 | Cond. No. | 3.50e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.458 |
Model: | OLS | Adj. R-squared: | 0.367 |
Method: | Least Squares | F-statistic: | 5.063 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0255 |
Time: | 04:31:03 | Log-Likelihood: | -70.711 |
No. Observations: | 15 | AIC: | 147.4 |
Df Residuals: | 12 | BIC: | 149.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -295.3799 | 818.904 | -0.361 | 0.725 | -2079.618 1488.858 |
C(dose)[T.1] | 50.4783 | 15.878 | 3.179 | 0.008 | 15.883 85.074 |
expression | 30.7625 | 69.428 | 0.443 | 0.666 | -120.508 182.033 |
Omnibus: | 1.831 | Durbin-Watson: | 0.727 |
Prob(Omnibus): | 0.400 | Jarque-Bera (JB): | 1.364 |
Skew: | -0.688 | Prob(JB): | 0.506 |
Kurtosis: | 2.465 | Cond. No. | 1.25e+03 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:31:03 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.001 |
Model: | OLS | Adj. R-squared: | -0.076 |
Method: | Least Squares | F-statistic: | 0.01128 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.917 |
Time: | 04:31:03 | Log-Likelihood: | -75.294 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 204.9474 | 1047.973 | 0.196 | 0.848 | -2059.060 2468.955 |
expression | -9.4533 | 89.021 | -0.106 | 0.917 | -201.772 182.865 |
Omnibus: | 0.686 | Durbin-Watson: | 1.651 |
Prob(Omnibus): | 0.710 | Jarque-Bera (JB): | 0.613 |
Skew: | 0.065 | Prob(JB): | 0.736 |
Kurtosis: | 2.018 | Cond. No. | 1.22e+03 |