AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.170 0.684 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.654
Model: OLS Adj. R-squared: 0.600
Method: Least Squares F-statistic: 11.99
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000124
Time: 04:50:19 Log-Likelihood: -100.89
No. Observations: 23 AIC: 209.8
Df Residuals: 19 BIC: 214.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 2.2085 98.059 0.023 0.982 -203.031 207.448
C(dose)[T.1] 99.0931 124.275 0.797 0.435 -161.016 359.203
expression 9.0382 17.010 0.531 0.601 -26.564 44.640
expression:C(dose)[T.1] -7.8715 22.168 -0.355 0.726 -54.269 38.526
Omnibus: 0.700 Durbin-Watson: 1.963
Prob(Omnibus): 0.705 Jarque-Bera (JB): 0.670
Skew: -0.065 Prob(JB): 0.715
Kurtosis: 2.174 Cond. No. 216.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.617
Method: Least Squares F-statistic: 18.74
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.60e-05
Time: 04:50:19 Log-Likelihood: -100.97
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 28.8731 61.666 0.468 0.645 -99.760 157.506
C(dose)[T.1] 55.1068 9.728 5.665 0.000 34.814 75.399
expression 4.4036 10.667 0.413 0.684 -17.847 26.654
Omnibus: 0.237 Durbin-Watson: 1.922
Prob(Omnibus): 0.888 Jarque-Bera (JB): 0.431
Skew: -0.002 Prob(JB): 0.806
Kurtosis: 2.329 Cond. No. 81.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:50:19 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.094
Model: OLS Adj. R-squared: 0.051
Method: Least Squares F-statistic: 2.171
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.155
Time: 04:50:19 Log-Likelihood: -111.97
No. Observations: 23 AIC: 227.9
Df Residuals: 21 BIC: 230.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 203.2976 84.146 2.416 0.025 28.306 378.289
expression -22.2221 15.081 -1.474 0.155 -53.584 9.140
Omnibus: 2.498 Durbin-Watson: 2.280
Prob(Omnibus): 0.287 Jarque-Bera (JB): 1.518
Skew: 0.366 Prob(JB): 0.468
Kurtosis: 1.975 Cond. No. 70.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.279 0.157 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.539
Model: OLS Adj. R-squared: 0.413
Method: Least Squares F-statistic: 4.280
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0313
Time: 04:50:19 Log-Likelihood: -69.499
No. Observations: 15 AIC: 147.0
Df Residuals: 11 BIC: 149.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 233.0272 115.338 2.020 0.068 -20.830 486.885
C(dose)[T.1] -32.7963 358.546 -0.091 0.929 -821.951 756.359
expression -27.3728 18.978 -1.442 0.177 -69.144 14.398
expression:C(dose)[T.1] 12.8901 61.769 0.209 0.839 -123.063 148.843
Omnibus: 3.547 Durbin-Watson: 1.503
Prob(Omnibus): 0.170 Jarque-Bera (JB): 1.701
Skew: -0.807 Prob(JB): 0.427
Kurtosis: 3.339 Cond. No. 336.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.537
Model: OLS Adj. R-squared: 0.460
Method: Least Squares F-statistic: 6.952
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00988
Time: 04:50:19 Log-Likelihood: -69.529
No. Observations: 15 AIC: 145.1
Df Residuals: 12 BIC: 147.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 225.6657 105.344 2.142 0.053 -3.859 455.191
C(dose)[T.1] 41.9527 15.206 2.759 0.017 8.822 75.083
expression -26.1560 17.326 -1.510 0.157 -63.905 11.593
Omnibus: 4.284 Durbin-Watson: 1.465
Prob(Omnibus): 0.117 Jarque-Bera (JB): 1.954
Skew: -0.822 Prob(JB): 0.376
Kurtosis: 3.652 Cond. No. 89.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:50:19 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.243
Model: OLS Adj. R-squared: 0.185
Method: Least Squares F-statistic: 4.171
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0620
Time: 04:50:19 Log-Likelihood: -73.213
No. Observations: 15 AIC: 150.4
Df Residuals: 13 BIC: 151.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 337.0651 119.508 2.820 0.014 78.884 595.246
expression -41.2397 20.193 -2.042 0.062 -84.864 2.385
Omnibus: 0.775 Durbin-Watson: 1.868
Prob(Omnibus): 0.679 Jarque-Bera (JB): 0.701
Skew: 0.246 Prob(JB): 0.704
Kurtosis: 2.061 Cond. No. 82.3