AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.110 0.744 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.602
Method: Least Squares F-statistic: 12.08
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000118
Time: 04:49:12 Log-Likelihood: -100.83
No. Observations: 23 AIC: 209.7
Df Residuals: 19 BIC: 214.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -59.5589 187.871 -0.317 0.755 -452.777 333.659
C(dose)[T.1] 195.4039 271.180 0.721 0.480 -372.181 762.989
expression 14.3829 23.739 0.606 0.552 -35.302 64.068
expression:C(dose)[T.1] -17.8145 33.545 -0.531 0.602 -88.024 52.395
Omnibus: 0.311 Durbin-Watson: 1.856
Prob(Omnibus): 0.856 Jarque-Bera (JB): 0.482
Skew: 0.109 Prob(JB): 0.786
Kurtosis: 2.325 Cond. No. 648.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.65
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.68e-05
Time: 04:49:12 Log-Likelihood: -101.00
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 11.0093 130.404 0.084 0.934 -261.009 283.028
C(dose)[T.1] 51.4977 10.356 4.973 0.000 29.894 73.101
expression 5.4614 16.468 0.332 0.744 -28.891 39.814
Omnibus: 0.117 Durbin-Watson: 1.913
Prob(Omnibus): 0.943 Jarque-Bera (JB): 0.337
Skew: 0.054 Prob(JB): 0.845
Kurtosis: 2.417 Cond. No. 245.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:49:12 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.219
Model: OLS Adj. R-squared: 0.182
Method: Least Squares F-statistic: 5.905
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0241
Time: 04:49:12 Log-Likelihood: -110.26
No. Observations: 23 AIC: 224.5
Df Residuals: 21 BIC: 226.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -318.3466 163.934 -1.942 0.066 -659.265 22.572
expression 49.3204 20.296 2.430 0.024 7.112 91.528
Omnibus: 2.182 Durbin-Watson: 2.332
Prob(Omnibus): 0.336 Jarque-Bera (JB): 1.585
Skew: 0.450 Prob(JB): 0.453
Kurtosis: 2.081 Cond. No. 211.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.096 0.066 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.591
Model: OLS Adj. R-squared: 0.479
Method: Least Squares F-statistic: 5.292
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0168
Time: 04:49:12 Log-Likelihood: -68.600
No. Observations: 15 AIC: 145.2
Df Residuals: 11 BIC: 148.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 283.9736 150.396 1.888 0.086 -47.047 614.994
C(dose)[T.1] 94.2280 249.449 0.378 0.713 -454.805 643.261
expression -25.3074 17.535 -1.443 0.177 -63.902 13.287
expression:C(dose)[T.1] -6.3100 29.745 -0.212 0.836 -71.778 59.158
Omnibus: 2.104 Durbin-Watson: 0.935
Prob(Omnibus): 0.349 Jarque-Bera (JB): 1.181
Skew: -0.684 Prob(JB): 0.554
Kurtosis: 2.869 Cond. No. 375.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.589
Model: OLS Adj. R-squared: 0.521
Method: Least Squares F-statistic: 8.600
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00482
Time: 04:49:12 Log-Likelihood: -68.631
No. Observations: 15 AIC: 143.3
Df Residuals: 12 BIC: 145.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 302.7374 116.696 2.594 0.023 48.478 556.997
C(dose)[T.1] 41.4026 14.126 2.931 0.013 10.626 72.179
expression -27.5003 13.589 -2.024 0.066 -57.108 2.107
Omnibus: 2.230 Durbin-Watson: 0.940
Prob(Omnibus): 0.328 Jarque-Bera (JB): 1.220
Skew: -0.697 Prob(JB): 0.543
Kurtosis: 2.915 Cond. No. 147.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:49:12 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.295
Model: OLS Adj. R-squared: 0.241
Method: Least Squares F-statistic: 5.435
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0365
Time: 04:49:12 Log-Likelihood: -72.680
No. Observations: 15 AIC: 149.4
Df Residuals: 13 BIC: 150.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 416.0939 138.567 3.003 0.010 116.738 715.450
expression -38.3594 16.454 -2.331 0.036 -73.906 -2.812
Omnibus: 1.935 Durbin-Watson: 1.822
Prob(Omnibus): 0.380 Jarque-Bera (JB): 1.060
Skew: 0.282 Prob(JB): 0.589
Kurtosis: 1.826 Cond. No. 139.