AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.484 | 0.495 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.697 |
Model: | OLS | Adj. R-squared: | 0.650 |
Method: | Least Squares | F-statistic: | 14.59 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.61e-05 |
Time: | 04:57:12 | Log-Likelihood: | -99.360 |
No. Observations: | 23 | AIC: | 206.7 |
Df Residuals: | 19 | BIC: | 211.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 51.3307 | 157.922 | 0.325 | 0.749 | -279.204 381.865 |
C(dose)[T.1] | 592.7739 | 346.297 | 1.712 | 0.103 | -132.034 1317.581 |
expression | 0.3023 | 16.579 | 0.018 | 0.986 | -34.397 35.002 |
expression:C(dose)[T.1] | -61.9772 | 39.106 | -1.585 | 0.130 | -143.828 19.874 |
Omnibus: | 0.603 | Durbin-Watson: | 1.691 |
Prob(Omnibus): | 0.740 | Jarque-Bera (JB): | 0.679 |
Skew: | 0.230 | Prob(JB): | 0.712 |
Kurtosis: | 2.295 | Cond. No. | 875. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.623 |
Method: | Least Squares | F-statistic: | 19.18 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.23e-05 |
Time: | 04:57:12 | Log-Likelihood: | -100.79 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 20 | BIC: | 211.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 157.3631 | 148.357 | 1.061 | 0.301 | -152.104 466.830 |
C(dose)[T.1] | 44.4580 | 15.424 | 2.882 | 0.009 | 12.284 76.632 |
expression | -10.8365 | 15.572 | -0.696 | 0.495 | -43.320 21.647 |
Omnibus: | 0.681 | Durbin-Watson: | 1.909 |
Prob(Omnibus): | 0.711 | Jarque-Bera (JB): | 0.658 |
Skew: | 0.035 | Prob(JB): | 0.720 |
Kurtosis: | 2.175 | Cond. No. | 318. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:57:12 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.515 |
Model: | OLS | Adj. R-squared: | 0.492 |
Method: | Least Squares | F-statistic: | 22.30 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000116 |
Time: | 04:57:12 | Log-Likelihood: | -104.78 |
No. Observations: | 23 | AIC: | 213.6 |
Df Residuals: | 21 | BIC: | 215.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 517.5419 | 92.851 | 5.574 | 0.000 | 324.448 710.635 |
expression | -47.9687 | 10.158 | -4.722 | 0.000 | -69.093 -26.844 |
Omnibus: | 0.576 | Durbin-Watson: | 2.420 |
Prob(Omnibus): | 0.750 | Jarque-Bera (JB): | 0.619 |
Skew: | 0.318 | Prob(JB): | 0.734 |
Kurtosis: | 2.508 | Cond. No. | 171. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.693 | 0.127 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.557 |
Model: | OLS | Adj. R-squared: | 0.436 |
Method: | Least Squares | F-statistic: | 4.602 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0254 |
Time: | 04:57:12 | Log-Likelihood: | -69.201 |
No. Observations: | 15 | AIC: | 146.4 |
Df Residuals: | 11 | BIC: | 149.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 406.8086 | 325.812 | 1.249 | 0.238 | -310.299 1123.917 |
C(dose)[T.1] | 224.2404 | 522.406 | 0.429 | 0.676 | -925.568 1374.049 |
expression | -33.5164 | 32.159 | -1.042 | 0.320 | -104.298 37.265 |
expression:C(dose)[T.1] | -22.4517 | 54.835 | -0.409 | 0.690 | -143.143 98.239 |
Omnibus: | 6.825 | Durbin-Watson: | 1.402 |
Prob(Omnibus): | 0.033 | Jarque-Bera (JB): | 3.733 |
Skew: | -1.135 | Prob(JB): | 0.155 |
Kurtosis: | 3.906 | Cond. No. | 858. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.550 |
Model: | OLS | Adj. R-squared: | 0.475 |
Method: | Least Squares | F-statistic: | 7.328 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00832 |
Time: | 04:57:12 | Log-Likelihood: | -69.314 |
No. Observations: | 15 | AIC: | 144.6 |
Df Residuals: | 12 | BIC: | 146.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 485.0016 | 254.655 | 1.905 | 0.081 | -69.844 1039.847 |
C(dose)[T.1] | 10.6625 | 27.453 | 0.388 | 0.705 | -49.151 70.477 |
expression | -41.2386 | 25.128 | -1.641 | 0.127 | -95.988 13.511 |
Omnibus: | 5.401 | Durbin-Watson: | 1.502 |
Prob(Omnibus): | 0.067 | Jarque-Bera (JB): | 2.863 |
Skew: | -1.030 | Prob(JB): | 0.239 |
Kurtosis: | 3.580 | Cond. No. | 352. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:57:12 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.544 |
Model: | OLS | Adj. R-squared: | 0.509 |
Method: | Least Squares | F-statistic: | 15.52 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00170 |
Time: | 04:57:12 | Log-Likelihood: | -69.408 |
No. Observations: | 15 | AIC: | 142.8 |
Df Residuals: | 13 | BIC: | 144.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 571.0534 | 121.378 | 4.705 | 0.000 | 308.831 833.276 |
expression | -49.5861 | 12.587 | -3.939 | 0.002 | -76.780 -22.393 |
Omnibus: | 4.249 | Durbin-Watson: | 1.727 |
Prob(Omnibus): | 0.119 | Jarque-Bera (JB): | 2.149 |
Skew: | -0.905 | Prob(JB): | 0.342 |
Kurtosis: | 3.407 | Cond. No. | 172. |