AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.223 0.642 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.669
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 12.77
Date: Tue, 03 Dec 2024 Prob (F-statistic): 8.40e-05
Time: 11:38:06 Log-Likelihood: -100.41
No. Observations: 23 AIC: 208.8
Df Residuals: 19 BIC: 213.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 52.8152 40.220 1.313 0.205 -31.367 136.997
C(dose)[T.1] -34.4965 93.778 -0.368 0.717 -230.776 161.783
expression 0.2313 6.603 0.035 0.972 -13.589 14.052
expression:C(dose)[T.1] 15.0159 15.874 0.946 0.356 -18.210 48.242
Omnibus: 0.429 Durbin-Watson: 1.874
Prob(Omnibus): 0.807 Jarque-Bera (JB): 0.550
Skew: -0.097 Prob(JB): 0.760
Kurtosis: 2.268 Cond. No. 151.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 18.81
Date: Tue, 03 Dec 2024 Prob (F-statistic): 2.54e-05
Time: 11:38:06 Log-Likelihood: -100.94
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 37.1701 36.565 1.017 0.322 -39.104 113.444
C(dose)[T.1] 53.8180 8.781 6.129 0.000 35.502 72.134
expression 2.8294 5.989 0.472 0.642 -9.663 15.322
Omnibus: 0.482 Durbin-Watson: 1.963
Prob(Omnibus): 0.786 Jarque-Bera (JB): 0.568
Skew: -0.020 Prob(JB): 0.753
Kurtosis: 2.232 Cond. No. 51.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 03 Dec 2024 Prob (F-statistic): 3.51e-06
Time: 11:38:06 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.02095
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.886
Time: 11:38:06 Log-Likelihood: -113.09
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 88.1857 58.952 1.496 0.150 -34.411 210.783
expression -1.4255 9.849 -0.145 0.886 -21.907 19.056
Omnibus: 3.228 Durbin-Watson: 2.487
Prob(Omnibus): 0.199 Jarque-Bera (JB): 1.577
Skew: 0.303 Prob(JB): 0.455
Kurtosis: 1.870 Cond. No. 50.3

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.369 0.265 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.636
Model: OLS Adj. R-squared: 0.537
Method: Least Squares F-statistic: 6.411
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00902
Time: 11:38:06 Log-Likelihood: -67.717
No. Observations: 15 AIC: 143.4
Df Residuals: 11 BIC: 146.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 38.9818 74.230 0.525 0.610 -124.397 202.361
C(dose)[T.1] -266.5990 164.551 -1.620 0.133 -628.773 95.575
expression 4.1884 10.835 0.387 0.706 -19.658 28.035
expression:C(dose)[T.1] 53.1129 26.696 1.990 0.072 -5.644 111.869
Omnibus: 0.534 Durbin-Watson: 1.420
Prob(Omnibus): 0.766 Jarque-Bera (JB): 0.031
Skew: -0.111 Prob(JB): 0.985
Kurtosis: 3.002 Cond. No. 188.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.505
Model: OLS Adj. R-squared: 0.423
Method: Least Squares F-statistic: 6.127
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0147
Time: 11:38:06 Log-Likelihood: -70.023
No. Observations: 15 AIC: 146.0
Df Residuals: 12 BIC: 148.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -20.4381 75.873 -0.269 0.792 -185.750 144.874
C(dose)[T.1] 59.3416 17.249 3.440 0.005 21.760 96.924
expression 12.9372 11.056 1.170 0.265 -11.151 37.025
Omnibus: 1.985 Durbin-Watson: 1.315
Prob(Omnibus): 0.371 Jarque-Bera (JB): 1.457
Skew: -0.719 Prob(JB): 0.483
Kurtosis: 2.486 Cond. No. 67.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00629
Time: 11:38:07 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.017
Model: OLS Adj. R-squared: -0.058
Method: Least Squares F-statistic: 0.2280
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.641
Time: 11:38:07 Log-Likelihood: -75.170
No. Observations: 15 AIC: 154.3
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 133.0536 83.098 1.601 0.133 -46.468 312.575
expression -6.1798 12.942 -0.478 0.641 -34.139 21.779
Omnibus: 0.939 Durbin-Watson: 1.358
Prob(Omnibus): 0.625 Jarque-Bera (JB): 0.689
Skew: -0.004 Prob(JB): 0.709
Kurtosis: 1.950 Cond. No. 54.2