AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.011 | 0.919 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.595 |
Method: | Least Squares | F-statistic: | 11.78 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.000138 |
Time: | 22:05:59 | Log-Likelihood: | -101.02 |
No. Observations: | 23 | AIC: | 210.0 |
Df Residuals: | 19 | BIC: | 214.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 63.7605 | 70.741 | 0.901 | 0.379 | -84.302 211.823 |
C(dose)[T.1] | 32.2441 | 86.992 | 0.371 | 0.715 | -149.833 214.321 |
expression | -1.5214 | 11.224 | -0.136 | 0.894 | -25.013 21.970 |
expression:C(dose)[T.1] | 3.4913 | 14.122 | 0.247 | 0.807 | -26.066 33.049 |
Omnibus: | 0.312 | Durbin-Watson: | 1.875 |
Prob(Omnibus): | 0.855 | Jarque-Bera (JB): | 0.480 |
Skew: | 0.073 | Prob(JB): | 0.787 |
Kurtosis: | 2.307 | Cond. No. | 167. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.51 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 2.82e-05 |
Time: | 22:05:59 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 49.9145 | 42.190 | 1.183 | 0.251 | -38.093 137.922 |
C(dose)[T.1] | 53.6243 | 9.202 | 5.828 | 0.000 | 34.430 72.818 |
expression | 0.6839 | 6.650 | 0.103 | 0.919 | -13.188 14.556 |
Omnibus: | 0.310 | Durbin-Watson: | 1.918 |
Prob(Omnibus): | 0.856 | Jarque-Bera (JB): | 0.478 |
Skew: | 0.057 | Prob(JB): | 0.787 |
Kurtosis: | 2.303 | Cond. No. | 60.8 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:05:59 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.054 |
Model: | OLS | Adj. R-squared: | 0.009 |
Method: | Least Squares | F-statistic: | 1.190 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.288 |
Time: | 22:05:59 | Log-Likelihood: | -112.47 |
No. Observations: | 23 | AIC: | 228.9 |
Df Residuals: | 21 | BIC: | 231.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 147.0485 | 62.130 | 2.367 | 0.028 | 17.843 276.254 |
expression | -11.0785 | 10.157 | -1.091 | 0.288 | -32.201 10.045 |
Omnibus: | 3.771 | Durbin-Watson: | 2.278 |
Prob(Omnibus): | 0.152 | Jarque-Bera (JB): | 1.723 |
Skew: | 0.326 | Prob(JB): | 0.422 |
Kurtosis: | 1.828 | Cond. No. | 55.6 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.058 | 0.813 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.451 |
Model: | OLS | Adj. R-squared: | 0.302 |
Method: | Least Squares | F-statistic: | 3.018 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0758 |
Time: | 22:05:59 | Log-Likelihood: | -70.797 |
No. Observations: | 15 | AIC: | 149.6 |
Df Residuals: | 11 | BIC: | 152.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 37.2163 | 227.525 | 0.164 | 0.873 | -463.563 537.996 |
C(dose)[T.1] | 50.3129 | 274.645 | 0.183 | 0.858 | -554.176 654.802 |
expression | 5.8381 | 43.905 | 0.133 | 0.897 | -90.797 102.473 |
expression:C(dose)[T.1] | -0.5169 | 52.105 | -0.010 | 0.992 | -115.199 114.165 |
Omnibus: | 2.340 | Durbin-Watson: | 0.809 |
Prob(Omnibus): | 0.310 | Jarque-Bera (JB): | 1.750 |
Skew: | -0.784 | Prob(JB): | 0.417 |
Kurtosis: | 2.416 | Cond. No. | 272. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.451 |
Model: | OLS | Adj. R-squared: | 0.360 |
Method: | Least Squares | F-statistic: | 4.938 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0272 |
Time: | 22:05:59 | Log-Likelihood: | -70.797 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 39.1156 | 117.701 | 0.332 | 0.745 | -217.333 295.564 |
C(dose)[T.1] | 47.5941 | 17.044 | 2.792 | 0.016 | 10.459 84.729 |
expression | 5.4711 | 22.636 | 0.242 | 0.813 | -43.849 54.791 |
Omnibus: | 2.318 | Durbin-Watson: | 0.808 |
Prob(Omnibus): | 0.314 | Jarque-Bera (JB): | 1.739 |
Skew: | -0.780 | Prob(JB): | 0.419 |
Kurtosis: | 2.409 | Cond. No. | 83.7 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:05:59 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.095 |
Model: | OLS | Adj. R-squared: | 0.025 |
Method: | Least Squares | F-statistic: | 1.364 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.264 |
Time: | 22:05:59 | Log-Likelihood: | -74.552 |
No. Observations: | 15 | AIC: | 153.1 |
Df Residuals: | 13 | BIC: | 154.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -66.5791 | 137.536 | -0.484 | 0.636 | -363.707 230.549 |
expression | 30.0582 | 25.735 | 1.168 | 0.264 | -25.538 85.654 |
Omnibus: | 0.073 | Durbin-Watson: | 1.465 |
Prob(Omnibus): | 0.964 | Jarque-Bera (JB): | 0.246 |
Skew: | 0.129 | Prob(JB): | 0.884 |
Kurtosis: | 2.428 | Cond. No. | 78.7 |