AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.261 0.052 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.713
Model: OLS Adj. R-squared: 0.668
Method: Least Squares F-statistic: 15.74
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.20e-05
Time: 05:13:29 Log-Likelihood: -98.748
No. Observations: 23 AIC: 205.5
Df Residuals: 19 BIC: 210.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 88.0056 19.074 4.614 0.000 48.082 127.929
C(dose)[T.1] 77.0265 67.384 1.143 0.267 -64.009 218.062
expression -11.5613 6.235 -1.854 0.079 -24.610 1.488
expression:C(dose)[T.1] -9.6967 24.603 -0.394 0.698 -61.191 41.797
Omnibus: 0.096 Durbin-Watson: 2.063
Prob(Omnibus): 0.953 Jarque-Bera (JB): 0.058
Skew: 0.056 Prob(JB): 0.972
Kurtosis: 2.782 Cond. No. 60.0

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.711
Model: OLS Adj. R-squared: 0.682
Method: Least Squares F-statistic: 24.57
Date: Thu, 21 Nov 2024 Prob (F-statistic): 4.11e-06
Time: 05:13:29 Log-Likelihood: -98.842
No. Observations: 23 AIC: 203.7
Df Residuals: 20 BIC: 207.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 89.8260 18.112 4.960 0.000 52.045 127.607
C(dose)[T.1] 50.6678 8.067 6.281 0.000 33.841 67.495
expression -12.1839 5.902 -2.064 0.052 -24.496 0.128
Omnibus: 0.005 Durbin-Watson: 2.086
Prob(Omnibus): 0.997 Jarque-Bera (JB): 0.131
Skew: 0.020 Prob(JB): 0.937
Kurtosis: 2.633 Cond. No. 14.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:13:29 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.140
Model: OLS Adj. R-squared: 0.099
Method: Least Squares F-statistic: 3.419
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0786
Time: 05:13:29 Log-Likelihood: -111.37
No. Observations: 23 AIC: 226.7
Df Residuals: 21 BIC: 229.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 130.8082 28.428 4.601 0.000 71.689 189.928
expression -18.1267 9.803 -1.849 0.079 -38.512 2.259
Omnibus: 2.700 Durbin-Watson: 2.674
Prob(Omnibus): 0.259 Jarque-Bera (JB): 1.581
Skew: 0.372 Prob(JB): 0.454
Kurtosis: 1.953 Cond. No. 13.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.635 0.441 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.477
Model: OLS Adj. R-squared: 0.334
Method: Least Squares F-statistic: 3.340
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0597
Time: 05:13:29 Log-Likelihood: -70.444
No. Observations: 15 AIC: 148.9
Df Residuals: 11 BIC: 151.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 33.5633 66.560 0.504 0.624 -112.933 180.060
C(dose)[T.1] 41.1972 100.204 0.411 0.689 -179.350 261.745
expression 6.9085 13.367 0.517 0.615 -22.512 36.329
expression:C(dose)[T.1] 1.2948 19.736 0.066 0.949 -42.143 44.733
Omnibus: 1.375 Durbin-Watson: 0.873
Prob(Omnibus): 0.503 Jarque-Bera (JB): 1.088
Skew: -0.589 Prob(JB): 0.580
Kurtosis: 2.407 Cond. No. 86.2

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.476
Model: OLS Adj. R-squared: 0.389
Method: Least Squares F-statistic: 5.460
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0206
Time: 05:13:29 Log-Likelihood: -70.446
No. Observations: 15 AIC: 146.9
Df Residuals: 12 BIC: 149.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 30.6517 47.503 0.645 0.531 -72.849 134.153
C(dose)[T.1] 47.6856 15.456 3.085 0.009 14.010 81.361
expression 7.5025 9.417 0.797 0.441 -13.016 28.021
Omnibus: 1.342 Durbin-Watson: 0.879
Prob(Omnibus): 0.511 Jarque-Bera (JB): 1.070
Skew: -0.581 Prob(JB): 0.586
Kurtosis: 2.399 Cond. No. 32.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:13:29 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.061
Model: OLS Adj. R-squared: -0.011
Method: Least Squares F-statistic: 0.8471
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.374
Time: 05:13:29 Log-Likelihood: -74.827
No. Observations: 15 AIC: 153.7
Df Residuals: 13 BIC: 155.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 38.2256 61.035 0.626 0.542 -93.633 170.084
expression 11.0675 12.025 0.920 0.374 -14.910 37.045
Omnibus: 2.358 Durbin-Watson: 1.309
Prob(Omnibus): 0.308 Jarque-Bera (JB): 1.088
Skew: 0.208 Prob(JB): 0.580
Kurtosis: 1.748 Cond. No. 32.7