AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.142 0.298 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.672
Model: OLS Adj. R-squared: 0.620
Method: Least Squares F-statistic: 12.95
Date: Thu, 03 Apr 2025 Prob (F-statistic): 7.72e-05
Time: 22:55:51 Log-Likelihood: -100.30
No. Observations: 23 AIC: 208.6
Df Residuals: 19 BIC: 213.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -30.3864 81.202 -0.374 0.712 -200.345 139.572
C(dose)[T.1] 101.5243 113.758 0.892 0.383 -136.573 339.622
expression 15.3664 14.710 1.045 0.309 -15.421 46.154
expression:C(dose)[T.1] -9.0976 20.084 -0.453 0.656 -51.134 32.939
Omnibus: 0.570 Durbin-Watson: 2.145
Prob(Omnibus): 0.752 Jarque-Bera (JB): 0.609
Skew: -0.029 Prob(JB): 0.737
Kurtosis: 2.205 Cond. No. 201.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.668
Model: OLS Adj. R-squared: 0.635
Method: Least Squares F-statistic: 20.12
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.63e-05
Time: 22:55:51 Log-Likelihood: -100.42
No. Observations: 23 AIC: 206.8
Df Residuals: 20 BIC: 210.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -3.5208 54.351 -0.065 0.949 -116.895 109.853
C(dose)[T.1] 50.1642 9.032 5.554 0.000 31.324 69.004
expression 10.4863 9.814 1.068 0.298 -9.986 30.959
Omnibus: 0.516 Durbin-Watson: 2.096
Prob(Omnibus): 0.773 Jarque-Bera (JB): 0.584
Skew: -0.029 Prob(JB): 0.747
Kurtosis: 2.221 Cond. No. 74.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:55:51 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.156
Model: OLS Adj. R-squared: 0.116
Method: Least Squares F-statistic: 3.880
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0622
Time: 22:55:51 Log-Likelihood: -111.16
No. Observations: 23 AIC: 226.3
Df Residuals: 21 BIC: 228.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -80.7872 81.756 -0.988 0.334 -250.808 89.234
expression 28.4085 14.423 1.970 0.062 -1.585 58.402
Omnibus: 2.613 Durbin-Watson: 2.719
Prob(Omnibus): 0.271 Jarque-Bera (JB): 1.612
Skew: 0.400 Prob(JB): 0.447
Kurtosis: 1.978 Cond. No. 72.1

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.136 0.102 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.622
Model: OLS Adj. R-squared: 0.518
Method: Least Squares F-statistic: 6.022
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0111
Time: 22:55:52 Log-Likelihood: -68.012
No. Observations: 15 AIC: 144.0
Df Residuals: 11 BIC: 146.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 16.3648 117.376 0.139 0.892 -241.978 274.708
C(dose)[T.1] -165.5515 168.784 -0.981 0.348 -537.043 205.940
expression 7.9712 18.257 0.437 0.671 -32.212 48.154
expression:C(dose)[T.1] 34.8289 26.692 1.305 0.219 -23.920 93.578
Omnibus: 0.121 Durbin-Watson: 1.223
Prob(Omnibus): 0.941 Jarque-Bera (JB): 0.245
Skew: -0.171 Prob(JB): 0.885
Kurtosis: 2.476 Cond. No. 211.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.563
Model: OLS Adj. R-squared: 0.490
Method: Least Squares F-statistic: 7.729
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00697
Time: 22:55:52 Log-Likelihood: -69.092
No. Observations: 15 AIC: 144.2
Df Residuals: 12 BIC: 146.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -88.0145 88.375 -0.996 0.339 -280.567 104.538
C(dose)[T.1] 53.9402 14.268 3.780 0.003 22.852 85.028
expression 24.2651 13.703 1.771 0.102 -5.591 54.121
Omnibus: 0.823 Durbin-Watson: 0.917
Prob(Omnibus): 0.663 Jarque-Bera (JB): 0.780
Skew: -0.415 Prob(JB): 0.677
Kurtosis: 2.253 Cond. No. 82.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:55:52 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.043
Model: OLS Adj. R-squared: -0.031
Method: Least Squares F-statistic: 0.5770
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.461
Time: 22:55:52 Log-Likelihood: -74.974
No. Observations: 15 AIC: 153.9
Df Residuals: 13 BIC: 155.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 2.0418 121.027 0.017 0.987 -259.422 263.505
expression 14.5395 19.140 0.760 0.461 -26.811 55.890
Omnibus: 0.334 Durbin-Watson: 1.666
Prob(Omnibus): 0.846 Jarque-Bera (JB): 0.467
Skew: 0.005 Prob(JB): 0.792
Kurtosis: 2.135 Cond. No. 78.9