AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.000 0.994 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.655
Model: OLS Adj. R-squared: 0.601
Method: Least Squares F-statistic: 12.05
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000120
Time: 04:35:31 Log-Likelihood: -100.85
No. Observations: 23 AIC: 209.7
Df Residuals: 19 BIC: 214.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 47.6298 32.651 1.459 0.161 -20.709 115.969
C(dose)[T.1] 98.8570 77.452 1.276 0.217 -63.252 260.966
expression 1.9378 9.445 0.205 0.840 -17.830 21.706
expression:C(dose)[T.1] -15.6799 26.426 -0.593 0.560 -70.990 39.630
Omnibus: 0.352 Durbin-Watson: 1.944
Prob(Omnibus): 0.839 Jarque-Bera (JB): 0.504
Skew: 0.204 Prob(JB): 0.777
Kurtosis: 2.400 Cond. No. 67.9

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.49
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.83e-05
Time: 04:35:31 Log-Likelihood: -101.06
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.4295 30.074 1.810 0.085 -8.305 117.164
C(dose)[T.1] 53.3006 10.031 5.314 0.000 32.377 74.224
expression -0.0651 8.677 -0.008 0.994 -18.165 18.035
Omnibus: 0.321 Durbin-Watson: 1.886
Prob(Omnibus): 0.852 Jarque-Bera (JB): 0.484
Skew: 0.059 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 24.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:35:31 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.154
Model: OLS Adj. R-squared: 0.113
Method: Least Squares F-statistic: 3.811
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0644
Time: 04:35:31 Log-Likelihood: -111.19
No. Observations: 23 AIC: 226.4
Df Residuals: 21 BIC: 228.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 149.8890 36.555 4.100 0.001 73.869 225.909
expression -22.4444 11.498 -1.952 0.064 -46.355 1.466
Omnibus: 0.199 Durbin-Watson: 1.947
Prob(Omnibus): 0.905 Jarque-Bera (JB): 0.405
Skew: -0.039 Prob(JB): 0.817
Kurtosis: 2.355 Cond. No. 19.2

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.366 0.265 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.624
Model: OLS Adj. R-squared: 0.521
Method: Least Squares F-statistic: 6.085
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0107
Time: 04:35:31 Log-Likelihood: -67.964
No. Observations: 15 AIC: 143.9
Df Residuals: 11 BIC: 146.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 62.5713 33.920 1.845 0.092 -12.087 137.229
C(dose)[T.1] -58.6978 61.057 -0.961 0.357 -193.083 75.687
expression 1.1087 7.404 0.150 0.884 -15.187 17.405
expression:C(dose)[T.1] 27.0086 14.483 1.865 0.089 -4.867 58.885
Omnibus: 3.853 Durbin-Watson: 1.423
Prob(Omnibus): 0.146 Jarque-Bera (JB): 2.318
Skew: -0.963 Prob(JB): 0.314
Kurtosis: 2.991 Cond. No. 49.0

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.505
Model: OLS Adj. R-squared: 0.423
Method: Least Squares F-statistic: 6.123
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0147
Time: 04:35:31 Log-Likelihood: -70.025
No. Observations: 15 AIC: 146.0
Df Residuals: 12 BIC: 148.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 31.6446 32.502 0.974 0.349 -39.171 102.460
C(dose)[T.1] 52.2282 15.138 3.450 0.005 19.246 85.211
expression 8.1675 6.989 1.169 0.265 -7.061 23.396
Omnibus: 1.596 Durbin-Watson: 1.271
Prob(Omnibus): 0.450 Jarque-Bera (JB): 1.269
Skew: -0.568 Prob(JB): 0.530
Kurtosis: 2.139 Cond. No. 20.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:35:31 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.014
Model: OLS Adj. R-squared: -0.062
Method: Least Squares F-statistic: 0.1867
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.673
Time: 04:35:31 Log-Likelihood: -75.193
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 76.7891 40.343 1.903 0.079 -10.367 163.945
expression 4.0345 9.337 0.432 0.673 -16.138 24.207
Omnibus: 0.695 Durbin-Watson: 1.760
Prob(Omnibus): 0.706 Jarque-Bera (JB): 0.613
Skew: 0.032 Prob(JB): 0.736
Kurtosis: 2.012 Cond. No. 18.1