AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.482 | 0.238 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.681 |
Model: | OLS | Adj. R-squared: | 0.630 |
Method: | Least Squares | F-statistic: | 13.49 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 5.97e-05 |
Time: | 05:19:36 | Log-Likelihood: | -99.983 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 19 | BIC: | 212.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 15.2597 | 104.491 | 0.146 | 0.885 | -203.442 233.962 |
C(dose)[T.1] | -40.1549 | 145.211 | -0.277 | 0.785 | -344.085 263.775 |
expression | 5.4110 | 14.493 | 0.373 | 0.713 | -24.923 35.745 |
expression:C(dose)[T.1] | 13.3497 | 20.330 | 0.657 | 0.519 | -29.201 55.901 |
Omnibus: | 0.202 | Durbin-Watson: | 2.118 |
Prob(Omnibus): | 0.904 | Jarque-Bera (JB): | 0.374 |
Skew: | 0.168 | Prob(JB): | 0.830 |
Kurtosis: | 2.473 | Cond. No. | 321. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.673 |
Model: | OLS | Adj. R-squared: | 0.641 |
Method: | Least Squares | F-statistic: | 20.61 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.39e-05 |
Time: | 05:19:36 | Log-Likelihood: | -100.24 |
No. Observations: | 23 | AIC: | 206.5 |
Df Residuals: | 20 | BIC: | 209.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -33.5762 | 72.347 | -0.464 | 0.648 | -184.489 117.337 |
C(dose)[T.1] | 55.0271 | 8.575 | 6.417 | 0.000 | 37.140 72.914 |
expression | 12.1956 | 10.018 | 1.217 | 0.238 | -8.702 33.093 |
Omnibus: | 0.191 | Durbin-Watson: | 2.090 |
Prob(Omnibus): | 0.909 | Jarque-Bera (JB): | 0.396 |
Skew: | 0.095 | Prob(JB): | 0.821 |
Kurtosis: | 2.386 | Cond. No. | 125. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:19:36 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.001 |
Model: | OLS | Adj. R-squared: | -0.047 |
Method: | Least Squares | F-statistic: | 0.01123 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.917 |
Time: | 05:19:36 | Log-Likelihood: | -113.10 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 66.9642 | 120.554 | 0.555 | 0.584 | -183.742 317.671 |
expression | 1.7882 | 16.874 | 0.106 | 0.917 | -33.302 36.879 |
Omnibus: | 3.442 | Durbin-Watson: | 2.517 |
Prob(Omnibus): | 0.179 | Jarque-Bera (JB): | 1.584 |
Skew: | 0.281 | Prob(JB): | 0.453 |
Kurtosis: | 1.844 | Cond. No. | 122. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.059 | 0.813 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.460 |
Model: | OLS | Adj. R-squared: | 0.312 |
Method: | Least Squares | F-statistic: | 3.118 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0703 |
Time: | 05:19:36 | Log-Likelihood: | -70.685 |
No. Observations: | 15 | AIC: | 149.4 |
Df Residuals: | 11 | BIC: | 152.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -10.4250 | 176.523 | -0.059 | 0.954 | -398.950 378.100 |
C(dose)[T.1] | 157.5054 | 263.838 | 0.597 | 0.563 | -423.198 738.209 |
expression | 11.8075 | 26.711 | 0.442 | 0.667 | -46.984 70.599 |
expression:C(dose)[T.1] | -16.6333 | 40.936 | -0.406 | 0.692 | -106.734 73.467 |
Omnibus: | 2.756 | Durbin-Watson: | 0.873 |
Prob(Omnibus): | 0.252 | Jarque-Bera (JB): | 1.772 |
Skew: | -0.832 | Prob(JB): | 0.412 |
Kurtosis: | 2.748 | Cond. No. | 276. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.451 |
Model: | OLS | Adj. R-squared: | 0.360 |
Method: | Least Squares | F-statistic: | 4.938 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0272 |
Time: | 05:19:36 | Log-Likelihood: | -70.796 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 36.2701 | 129.245 | 0.281 | 0.784 | -245.331 317.872 |
C(dose)[T.1] | 50.5317 | 16.642 | 3.036 | 0.010 | 14.271 86.792 |
expression | 4.7256 | 19.525 | 0.242 | 0.813 | -37.815 47.266 |
Omnibus: | 2.149 | Durbin-Watson: | 0.806 |
Prob(Omnibus): | 0.341 | Jarque-Bera (JB): | 1.632 |
Skew: | -0.746 | Prob(JB): | 0.442 |
Kurtosis: | 2.380 | Cond. No. | 110. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:19:36 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.030 |
Model: | OLS | Adj. R-squared: | -0.045 |
Method: | Least Squares | F-statistic: | 0.4023 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.537 |
Time: | 05:19:36 | Log-Likelihood: | -75.071 |
No. Observations: | 15 | AIC: | 154.1 |
Df Residuals: | 13 | BIC: | 155.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 189.8367 | 151.955 | 1.249 | 0.234 | -138.443 518.116 |
expression | -14.9267 | 23.534 | -0.634 | 0.537 | -65.769 35.915 |
Omnibus: | 0.231 | Durbin-Watson: | 1.625 |
Prob(Omnibus): | 0.891 | Jarque-Bera (JB): | 0.383 |
Skew: | -0.217 | Prob(JB): | 0.826 |
Kurtosis: | 2.350 | Cond. No. | 100. |