AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.000 0.995 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.608
Method: Least Squares F-statistic: 12.36
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.000103
Time: 11:46:45 Log-Likelihood: -100.66
No. Observations: 23 AIC: 209.3
Df Residuals: 19 BIC: 213.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -23.5468 126.174 -0.187 0.854 -287.632 240.538
C(dose)[T.1] 192.1650 168.308 1.142 0.268 -160.108 544.438
expression 11.7135 18.985 0.617 0.545 -28.023 51.450
expression:C(dose)[T.1] -21.1425 25.597 -0.826 0.419 -74.718 32.433
Omnibus: 0.892 Durbin-Watson: 1.908
Prob(Omnibus): 0.640 Jarque-Bera (JB): 0.778
Skew: -0.153 Prob(JB): 0.678
Kurtosis: 2.152 Cond. No. 340.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.49
Date: Tue, 03 Dec 2024 Prob (F-statistic): 2.83e-05
Time: 11:46:45 Log-Likelihood: -101.06
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 53.6582 84.075 0.638 0.531 -121.720 229.036
C(dose)[T.1] 53.3505 9.002 5.926 0.000 34.572 72.129
expression 0.0829 12.633 0.007 0.995 -26.268 26.434
Omnibus: 0.324 Durbin-Watson: 1.887
Prob(Omnibus): 0.850 Jarque-Bera (JB): 0.486
Skew: 0.059 Prob(JB): 0.784
Kurtosis: 2.297 Cond. No. 129.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 03 Dec 2024 Prob (F-statistic): 3.51e-06
Time: 11:46:45 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.033
Model: OLS Adj. R-squared: -0.013
Method: Least Squares F-statistic: 0.7120
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.408
Time: 11:46:45 Log-Likelihood: -112.72
No. Observations: 23 AIC: 229.4
Df Residuals: 21 BIC: 231.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 190.0964 131.006 1.451 0.162 -82.345 462.537
expression -16.8232 19.938 -0.844 0.408 -58.286 24.639
Omnibus: 5.726 Durbin-Watson: 2.413
Prob(Omnibus): 0.057 Jarque-Bera (JB): 1.885
Skew: 0.242 Prob(JB): 0.390
Kurtosis: 1.684 Cond. No. 124.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.554 0.236 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.578
Model: OLS Adj. R-squared: 0.464
Method: Least Squares F-statistic: 5.032
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0195
Time: 11:46:45 Log-Likelihood: -68.821
No. Observations: 15 AIC: 145.6
Df Residuals: 11 BIC: 148.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 85.8314 127.270 0.674 0.514 -194.287 365.950
C(dose)[T.1] 297.3888 193.453 1.537 0.152 -128.397 723.175
expression -2.5861 17.824 -0.145 0.887 -41.817 36.644
expression:C(dose)[T.1] -36.7304 27.879 -1.317 0.214 -98.093 24.632
Omnibus: 0.055 Durbin-Watson: 1.047
Prob(Omnibus): 0.973 Jarque-Bera (JB): 0.284
Skew: -0.027 Prob(JB): 0.868
Kurtosis: 2.328 Cond. No. 244.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.512
Model: OLS Adj. R-squared: 0.431
Method: Least Squares F-statistic: 6.294
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0135
Time: 11:46:45 Log-Likelihood: -69.920
No. Observations: 15 AIC: 145.8
Df Residuals: 12 BIC: 148.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 192.6652 101.054 1.907 0.081 -27.513 412.843
C(dose)[T.1] 43.2964 15.548 2.785 0.017 9.420 77.173
expression -17.5994 14.119 -1.246 0.236 -48.363 13.164
Omnibus: 1.466 Durbin-Watson: 1.219
Prob(Omnibus): 0.480 Jarque-Bera (JB): 1.193
Skew: -0.553 Prob(JB): 0.551
Kurtosis: 2.173 Cond. No. 97.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00629
Time: 11:46:45 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.197
Model: OLS Adj. R-squared: 0.135
Method: Least Squares F-statistic: 3.181
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0978
Time: 11:46:45 Log-Likelihood: -73.658
No. Observations: 15 AIC: 151.3
Df Residuals: 13 BIC: 152.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 298.7942 115.371 2.590 0.022 49.550 548.039
expression -29.5693 16.579 -1.784 0.098 -65.386 6.247
Omnibus: 0.319 Durbin-Watson: 1.630
Prob(Omnibus): 0.853 Jarque-Bera (JB): 0.074
Skew: -0.146 Prob(JB): 0.964
Kurtosis: 2.819 Cond. No. 90.0