AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.056 | 0.815 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.655 |
Model: | OLS | Adj. R-squared: | 0.601 |
Method: | Least Squares | F-statistic: | 12.03 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.000122 |
Time: | 23:04:42 | Log-Likelihood: | -100.86 |
No. Observations: | 23 | AIC: | 209.7 |
Df Residuals: | 19 | BIC: | 214.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 81.5922 | 255.232 | 0.320 | 0.753 | -452.614 615.798 |
C(dose)[T.1] | -194.7644 | 466.837 | -0.417 | 0.681 | -1171.865 782.336 |
expression | -2.8959 | 26.984 | -0.107 | 0.916 | -59.373 53.581 |
expression:C(dose)[T.1] | 24.9626 | 47.486 | 0.526 | 0.605 | -74.427 124.352 |
Omnibus: | 1.154 | Durbin-Watson: | 1.983 |
Prob(Omnibus): | 0.561 | Jarque-Bera (JB): | 0.839 |
Skew: | 0.075 | Prob(JB): | 0.657 |
Kurtosis: | 2.076 | Cond. No. | 1.24e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.57 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.76e-05 |
Time: | 23:04:43 | Log-Likelihood: | -101.03 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 5.3729 | 206.214 | 0.026 | 0.979 | -424.783 435.529 |
C(dose)[T.1] | 50.5157 | 14.782 | 3.417 | 0.003 | 19.681 81.350 |
expression | 5.1645 | 21.798 | 0.237 | 0.815 | -40.306 50.635 |
Omnibus: | 0.510 | Durbin-Watson: | 1.924 |
Prob(Omnibus): | 0.775 | Jarque-Bera (JB): | 0.597 |
Skew: | 0.122 | Prob(JB): | 0.742 |
Kurtosis: | 2.249 | Cond. No. | 465. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 23:04:43 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.446 |
Model: | OLS | Adj. R-squared: | 0.419 |
Method: | Least Squares | F-statistic: | 16.88 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.000501 |
Time: | 23:04:43 | Log-Likelihood: | -106.32 |
No. Observations: | 23 | AIC: | 216.6 |
Df Residuals: | 21 | BIC: | 218.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -553.6255 | 154.225 | -3.590 | 0.002 | -874.354 -232.897 |
expression | 65.1770 | 15.862 | 4.109 | 0.001 | 32.191 98.163 |
Omnibus: | 4.289 | Durbin-Watson: | 2.347 |
Prob(Omnibus): | 0.117 | Jarque-Bera (JB): | 1.512 |
Skew: | 0.058 | Prob(JB): | 0.470 |
Kurtosis: | 1.749 | Cond. No. | 282. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.548 | 0.474 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.474 |
Model: | OLS | Adj. R-squared: | 0.331 |
Method: | Least Squares | F-statistic: | 3.305 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0612 |
Time: | 23:04:43 | Log-Likelihood: | -70.481 |
No. Observations: | 15 | AIC: | 149.0 |
Df Residuals: | 11 | BIC: | 151.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 142.2385 | 688.257 | 0.207 | 0.840 | -1372.605 1657.082 |
C(dose)[T.1] | 178.1207 | 744.387 | 0.239 | 0.815 | -1460.264 1816.505 |
expression | -9.0543 | 83.288 | -0.109 | 0.915 | -192.370 174.262 |
expression:C(dose)[T.1] | -14.3346 | 89.416 | -0.160 | 0.876 | -211.137 182.468 |
Omnibus: | 3.623 | Durbin-Watson: | 0.816 |
Prob(Omnibus): | 0.163 | Jarque-Bera (JB): | 2.032 |
Skew: | -0.900 | Prob(JB): | 0.362 |
Kurtosis: | 3.086 | Cond. No. | 1.26e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.473 |
Model: | OLS | Adj. R-squared: | 0.385 |
Method: | Least Squares | F-statistic: | 5.381 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0215 |
Time: | 23:04:43 | Log-Likelihood: | -70.498 |
No. Observations: | 15 | AIC: | 147.0 |
Df Residuals: | 12 | BIC: | 149.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 244.9999 | 240.242 | 1.020 | 0.328 | -278.442 768.442 |
C(dose)[T.1] | 58.8327 | 20.162 | 2.918 | 0.013 | 14.903 102.763 |
expression | -21.4916 | 29.045 | -0.740 | 0.474 | -84.775 41.792 |
Omnibus: | 3.475 | Durbin-Watson: | 0.777 |
Prob(Omnibus): | 0.176 | Jarque-Bera (JB): | 1.998 |
Skew: | -0.894 | Prob(JB): | 0.368 |
Kurtosis: | 3.019 | Cond. No. | 271. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 23:04:43 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.099 |
Model: | OLS | Adj. R-squared: | 0.029 |
Method: | Least Squares | F-statistic: | 1.425 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.254 |
Time: | 23:04:43 | Log-Likelihood: | -74.520 |
No. Observations: | 15 | AIC: | 153.0 |
Df Residuals: | 13 | BIC: | 154.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -189.0007 | 236.999 | -0.797 | 0.439 | -701.006 323.004 |
expression | 33.2492 | 27.854 | 1.194 | 0.254 | -26.926 93.425 |
Omnibus: | 0.950 | Durbin-Watson: | 1.449 |
Prob(Omnibus): | 0.622 | Jarque-Bera (JB): | 0.710 |
Skew: | 0.117 | Prob(JB): | 0.701 |
Kurtosis: | 1.960 | Cond. No. | 212. |