AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.940 0.344 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.672
Model: OLS Adj. R-squared: 0.620
Method: Least Squares F-statistic: 12.97
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.63e-05
Time: 04:41:27 Log-Likelihood: -100.29
No. Observations: 23 AIC: 208.6
Df Residuals: 19 BIC: 213.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 35.8735 42.889 0.836 0.413 -53.895 125.642
C(dose)[T.1] 3.0979 77.464 0.040 0.969 -159.037 165.232
expression 3.4136 7.906 0.432 0.671 -13.134 19.961
expression:C(dose)[T.1] 9.1010 14.134 0.644 0.527 -20.483 38.685
Omnibus: 0.063 Durbin-Watson: 1.747
Prob(Omnibus): 0.969 Jarque-Bera (JB): 0.263
Skew: 0.080 Prob(JB): 0.877
Kurtosis: 2.502 Cond. No. 121.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.665
Model: OLS Adj. R-squared: 0.631
Method: Least Squares F-statistic: 19.83
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.79e-05
Time: 04:41:27 Log-Likelihood: -100.53
No. Observations: 23 AIC: 207.1
Df Residuals: 20 BIC: 210.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 20.5792 35.185 0.585 0.565 -52.814 93.973
C(dose)[T.1] 52.6586 8.599 6.124 0.000 34.721 70.596
expression 6.2611 6.457 0.970 0.344 -7.208 19.730
Omnibus: 0.019 Durbin-Watson: 1.861
Prob(Omnibus): 0.990 Jarque-Bera (JB): 0.225
Skew: 0.000 Prob(JB): 0.894
Kurtosis: 2.515 Cond. No. 46.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:41:27 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.036
Model: OLS Adj. R-squared: -0.010
Method: Least Squares F-statistic: 0.7923
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.384
Time: 04:41:27 Log-Likelihood: -112.68
No. Observations: 23 AIC: 229.4
Df Residuals: 21 BIC: 231.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 28.3151 58.183 0.487 0.632 -92.682 149.312
expression 9.4786 10.649 0.890 0.384 -12.667 31.625
Omnibus: 2.168 Durbin-Watson: 2.292
Prob(Omnibus): 0.338 Jarque-Bera (JB): 1.218
Skew: 0.214 Prob(JB): 0.544
Kurtosis: 1.957 Cond. No. 46.4

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.240 0.633 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.466
Model: OLS Adj. R-squared: 0.321
Method: Least Squares F-statistic: 3.205
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0659
Time: 04:41:27 Log-Likelihood: -70.589
No. Observations: 15 AIC: 149.2
Df Residuals: 11 BIC: 152.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -12.4244 133.024 -0.093 0.927 -305.207 280.358
C(dose)[T.1] 129.8483 206.533 0.629 0.542 -324.728 584.425
expression 13.9108 23.082 0.603 0.559 -36.892 64.714
expression:C(dose)[T.1] -14.0604 37.477 -0.375 0.715 -96.546 68.425
Omnibus: 2.535 Durbin-Watson: 0.873
Prob(Omnibus): 0.282 Jarque-Bera (JB): 1.739
Skew: -0.812 Prob(JB): 0.419
Kurtosis: 2.619 Cond. No. 185.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.460
Model: OLS Adj. R-squared: 0.369
Method: Least Squares F-statistic: 5.102
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0249
Time: 04:41:27 Log-Likelihood: -70.685
No. Observations: 15 AIC: 147.4
Df Residuals: 12 BIC: 149.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 18.1920 101.221 0.180 0.860 -202.349 238.733
C(dose)[T.1] 52.6484 17.106 3.078 0.010 15.378 89.919
expression 8.5773 17.521 0.490 0.633 -29.598 46.753
Omnibus: 2.447 Durbin-Watson: 0.785
Prob(Omnibus): 0.294 Jarque-Bera (JB): 1.865
Skew: -0.795 Prob(JB): 0.394
Kurtosis: 2.323 Cond. No. 75.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:41:27 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.033
Model: OLS Adj. R-squared: -0.041
Method: Least Squares F-statistic: 0.4429
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.517
Time: 04:41:27 Log-Likelihood: -75.049
No. Observations: 15 AIC: 154.1
Df Residuals: 13 BIC: 155.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 169.1109 113.806 1.486 0.161 -76.752 414.974
expression -13.6533 20.516 -0.665 0.517 -57.976 30.669
Omnibus: 0.171 Durbin-Watson: 1.511
Prob(Omnibus): 0.918 Jarque-Bera (JB): 0.376
Skew: -0.096 Prob(JB): 0.829
Kurtosis: 2.249 Cond. No. 65.2