AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
5.210 | 0.034 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.723 |
Model: | OLS | Adj. R-squared: | 0.679 |
Method: | Least Squares | F-statistic: | 16.52 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.59e-05 |
Time: | 04:35:30 | Log-Likelihood: | -98.348 |
No. Observations: | 23 | AIC: | 204.7 |
Df Residuals: | 19 | BIC: | 209.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 426.4564 | 251.562 | 1.695 | 0.106 | -100.069 952.982 |
C(dose)[T.1] | 149.5403 | 373.909 | 0.400 | 0.694 | -633.060 932.140 |
expression | -35.9543 | 24.292 | -1.480 | 0.155 | -86.798 14.889 |
expression:C(dose)[T.1] | -10.8691 | 36.801 | -0.295 | 0.771 | -87.894 66.156 |
Omnibus: | 0.136 | Durbin-Watson: | 2.171 |
Prob(Omnibus): | 0.934 | Jarque-Bera (JB): | 0.120 |
Skew: | 0.123 | Prob(JB): | 0.942 |
Kurtosis: | 2.746 | Cond. No. | 1.21e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.722 |
Model: | OLS | Adj. R-squared: | 0.694 |
Method: | Least Squares | F-statistic: | 25.92 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.80e-06 |
Time: | 04:35:30 | Log-Likelihood: | -98.400 |
No. Observations: | 23 | AIC: | 202.8 |
Df Residuals: | 20 | BIC: | 206.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 475.4886 | 184.642 | 2.575 | 0.018 | 90.332 860.645 |
C(dose)[T.1] | 39.1472 | 9.983 | 3.921 | 0.001 | 18.323 59.972 |
expression | -40.6902 | 17.826 | -2.283 | 0.034 | -77.875 -3.505 |
Omnibus: | 0.072 | Durbin-Watson: | 2.175 |
Prob(Omnibus): | 0.965 | Jarque-Bera (JB): | 0.074 |
Skew: | 0.058 | Prob(JB): | 0.964 |
Kurtosis: | 2.748 | Cond. No. | 488. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:35:30 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.508 |
Model: | OLS | Adj. R-squared: | 0.484 |
Method: | Least Squares | F-statistic: | 21.64 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000137 |
Time: | 04:35:30 | Log-Likelihood: | -104.96 |
No. Observations: | 23 | AIC: | 213.9 |
Df Residuals: | 21 | BIC: | 216.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 937.6348 | 184.486 | 5.082 | 0.000 | 553.975 1321.294 |
expression | -84.2204 | 18.104 | -4.652 | 0.000 | -121.869 -46.571 |
Omnibus: | 0.325 | Durbin-Watson: | 2.116 |
Prob(Omnibus): | 0.850 | Jarque-Bera (JB): | 0.369 |
Skew: | 0.242 | Prob(JB): | 0.831 |
Kurtosis: | 2.612 | Cond. No. | 375. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.446 | 0.517 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.474 |
Model: | OLS | Adj. R-squared: | 0.331 |
Method: | Least Squares | F-statistic: | 3.305 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0612 |
Time: | 04:35:30 | Log-Likelihood: | -70.480 |
No. Observations: | 15 | AIC: | 149.0 |
Df Residuals: | 11 | BIC: | 151.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 152.0946 | 470.659 | 0.323 | 0.753 | -883.819 1188.008 |
C(dose)[T.1] | 272.2198 | 641.937 | 0.424 | 0.680 | -1140.673 1685.113 |
expression | -8.1423 | 45.249 | -0.180 | 0.860 | -107.735 91.450 |
expression:C(dose)[T.1] | -20.9099 | 61.199 | -0.342 | 0.739 | -155.608 113.788 |
Omnibus: | 2.483 | Durbin-Watson: | 0.807 |
Prob(Omnibus): | 0.289 | Jarque-Bera (JB): | 1.862 |
Skew: | -0.741 | Prob(JB): | 0.394 |
Kurtosis: | 2.114 | Cond. No. | 1.15e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.469 |
Model: | OLS | Adj. R-squared: | 0.380 |
Method: | Least Squares | F-statistic: | 5.289 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0225 |
Time: | 04:35:30 | Log-Likelihood: | -70.560 |
No. Observations: | 15 | AIC: | 147.1 |
Df Residuals: | 12 | BIC: | 149.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 270.9569 | 305.120 | 0.888 | 0.392 | -393.842 935.756 |
C(dose)[T.1] | 52.9673 | 16.455 | 3.219 | 0.007 | 17.114 88.821 |
expression | -19.5733 | 29.323 | -0.668 | 0.517 | -83.463 44.317 |
Omnibus: | 2.480 | Durbin-Watson: | 0.948 |
Prob(Omnibus): | 0.289 | Jarque-Bera (JB): | 1.892 |
Skew: | -0.770 | Prob(JB): | 0.388 |
Kurtosis: | 2.190 | Cond. No. | 420. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:35:30 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.010 |
Model: | OLS | Adj. R-squared: | -0.067 |
Method: | Least Squares | F-statistic: | 0.1262 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.728 |
Time: | 04:35:31 | Log-Likelihood: | -75.228 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -41.0626 | 379.437 | -0.108 | 0.915 | -860.786 778.661 |
expression | 12.8301 | 36.121 | 0.355 | 0.728 | -65.204 90.864 |
Omnibus: | 0.247 | Durbin-Watson: | 1.509 |
Prob(Omnibus): | 0.884 | Jarque-Bera (JB): | 0.423 |
Skew: | 0.033 | Prob(JB): | 0.809 |
Kurtosis: | 2.180 | Cond. No. | 398. |