AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.075 | 0.786 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.681 |
Model: | OLS | Adj. R-squared: | 0.631 |
Method: | Least Squares | F-statistic: | 13.53 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 5.85e-05 |
Time: | 04:50:34 | Log-Likelihood: | -99.957 |
No. Observations: | 23 | AIC: | 207.9 |
Df Residuals: | 19 | BIC: | 212.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -126.7984 | 167.382 | -0.758 | 0.458 | -477.132 223.535 |
C(dose)[T.1] | 410.5576 | 263.969 | 1.555 | 0.136 | -141.936 963.052 |
expression | 22.3452 | 20.650 | 1.082 | 0.293 | -20.876 65.567 |
expression:C(dose)[T.1] | -43.8133 | 32.315 | -1.356 | 0.191 | -111.449 23.822 |
Omnibus: | 0.070 | Durbin-Watson: | 1.997 |
Prob(Omnibus): | 0.966 | Jarque-Bera (JB): | 0.295 |
Skew: | -0.009 | Prob(JB): | 0.863 |
Kurtosis: | 2.446 | Cond. No. | 636. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.60 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.73e-05 |
Time: | 04:50:34 | Log-Likelihood: | -101.02 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 18.1333 | 131.474 | 0.138 | 0.892 | -256.116 292.383 |
C(dose)[T.1] | 52.8574 | 8.926 | 5.922 | 0.000 | 34.238 71.476 |
expression | 4.4535 | 16.213 | 0.275 | 0.786 | -29.367 38.274 |
Omnibus: | 0.235 | Durbin-Watson: | 1.945 |
Prob(Omnibus): | 0.889 | Jarque-Bera (JB): | 0.429 |
Skew: | 0.082 | Prob(JB): | 0.807 |
Kurtosis: | 2.351 | Cond. No. | 249. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:50:34 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.037 |
Model: | OLS | Adj. R-squared: | -0.008 |
Method: | Least Squares | F-statistic: | 0.8148 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.377 |
Time: | 04:50:34 | Log-Likelihood: | -112.67 |
No. Observations: | 23 | AIC: | 229.3 |
Df Residuals: | 21 | BIC: | 231.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -109.7389 | 210.010 | -0.523 | 0.607 | -546.478 327.000 |
expression | 23.2405 | 25.747 | 0.903 | 0.377 | -30.304 76.785 |
Omnibus: | 2.385 | Durbin-Watson: | 2.593 |
Prob(Omnibus): | 0.303 | Jarque-Bera (JB): | 1.697 |
Skew: | 0.473 | Prob(JB): | 0.428 |
Kurtosis: | 2.064 | Cond. No. | 246. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.027 | 0.871 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.467 |
Model: | OLS | Adj. R-squared: | 0.322 |
Method: | Least Squares | F-statistic: | 3.218 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0653 |
Time: | 04:50:34 | Log-Likelihood: | -70.575 |
No. Observations: | 15 | AIC: | 149.2 |
Df Residuals: | 11 | BIC: | 152.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 297.2827 | 430.748 | 0.690 | 0.504 | -650.787 1245.353 |
C(dose)[T.1] | -324.3943 | 626.592 | -0.518 | 0.615 | -1703.514 1054.725 |
expression | -30.7693 | 57.640 | -0.534 | 0.604 | -157.634 96.096 |
expression:C(dose)[T.1] | 49.4236 | 82.511 | 0.599 | 0.561 | -132.182 231.030 |
Omnibus: | 2.158 | Durbin-Watson: | 0.809 |
Prob(Omnibus): | 0.340 | Jarque-Bera (JB): | 1.658 |
Skew: | -0.743 | Prob(JB): | 0.437 |
Kurtosis: | 2.332 | Cond. No. | 794. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.450 |
Model: | OLS | Adj. R-squared: | 0.358 |
Method: | Least Squares | F-statistic: | 4.910 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0277 |
Time: | 04:50:34 | Log-Likelihood: | -70.816 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 117.1084 | 299.976 | 0.390 | 0.703 | -536.484 770.701 |
C(dose)[T.1] | 50.7594 | 18.333 | 2.769 | 0.017 | 10.815 90.704 |
expression | -6.6504 | 40.127 | -0.166 | 0.871 | -94.079 80.778 |
Omnibus: | 3.203 | Durbin-Watson: | 0.812 |
Prob(Omnibus): | 0.202 | Jarque-Bera (JB): | 2.073 |
Skew: | -0.904 | Prob(JB): | 0.355 |
Kurtosis: | 2.775 | Cond. No. | 297. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:50:34 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.099 |
Model: | OLS | Adj. R-squared: | 0.029 |
Method: | Least Squares | F-statistic: | 1.424 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.254 |
Time: | 04:50:34 | Log-Likelihood: | -74.521 |
No. Observations: | 15 | AIC: | 153.0 |
Df Residuals: | 13 | BIC: | 154.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -289.9054 | 321.613 | -0.901 | 0.384 | -984.708 404.897 |
expression | 50.4993 | 42.323 | 1.193 | 0.254 | -40.934 141.933 |
Omnibus: | 0.670 | Durbin-Watson: | 1.458 |
Prob(Omnibus): | 0.715 | Jarque-Bera (JB): | 0.605 |
Skew: | 0.044 | Prob(JB): | 0.739 |
Kurtosis: | 2.020 | Cond. No. | 258. |