AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.176 | 0.090 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.697 |
Model: | OLS | Adj. R-squared: | 0.649 |
Method: | Least Squares | F-statistic: | 14.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.63e-05 |
Time: | 04:44:18 | Log-Likelihood: | -99.368 |
No. Observations: | 23 | AIC: | 206.7 |
Df Residuals: | 19 | BIC: | 211.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 238.4289 | 201.103 | 1.186 | 0.250 | -182.484 659.342 |
C(dose)[T.1] | 54.0378 | 237.029 | 0.228 | 0.822 | -442.070 550.146 |
expression | -25.6357 | 27.973 | -0.916 | 0.371 | -84.185 32.913 |
expression:C(dose)[T.1] | -0.2261 | 33.010 | -0.007 | 0.995 | -69.317 68.865 |
Omnibus: | 3.180 | Durbin-Watson: | 1.619 |
Prob(Omnibus): | 0.204 | Jarque-Bera (JB): | 1.558 |
Skew: | 0.298 | Prob(JB): | 0.459 |
Kurtosis: | 1.872 | Cond. No. | 593. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.697 |
Model: | OLS | Adj. R-squared: | 0.667 |
Method: | Least Squares | F-statistic: | 23.02 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.49e-06 |
Time: | 04:44:18 | Log-Likelihood: | -99.368 |
No. Observations: | 23 | AIC: | 204.7 |
Df Residuals: | 20 | BIC: | 208.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 239.5957 | 104.176 | 2.300 | 0.032 | 22.288 456.903 |
C(dose)[T.1] | 52.4152 | 8.163 | 6.421 | 0.000 | 35.387 69.443 |
expression | -25.7981 | 14.476 | -1.782 | 0.090 | -55.994 4.398 |
Omnibus: | 3.185 | Durbin-Watson: | 1.617 |
Prob(Omnibus): | 0.203 | Jarque-Bera (JB): | 1.559 |
Skew: | 0.298 | Prob(JB): | 0.459 |
Kurtosis: | 1.872 | Cond. No. | 188. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:44:18 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.073 |
Model: | OLS | Adj. R-squared: | 0.029 |
Method: | Least Squares | F-statistic: | 1.650 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.213 |
Time: | 04:44:18 | Log-Likelihood: | -112.23 |
No. Observations: | 23 | AIC: | 228.5 |
Df Residuals: | 21 | BIC: | 230.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 306.8882 | 176.981 | 1.734 | 0.098 | -61.163 674.940 |
expression | -31.6880 | 24.668 | -1.285 | 0.213 | -82.988 19.612 |
Omnibus: | 3.525 | Durbin-Watson: | 2.547 |
Prob(Omnibus): | 0.172 | Jarque-Bera (JB): | 1.619 |
Skew: | 0.293 | Prob(JB): | 0.445 |
Kurtosis: | 1.840 | Cond. No. | 186. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.147 | 0.709 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.753 |
Model: | OLS | Adj. R-squared: | 0.686 |
Method: | Least Squares | F-statistic: | 11.18 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00115 |
Time: | 04:44:18 | Log-Likelihood: | -64.812 |
No. Observations: | 15 | AIC: | 137.6 |
Df Residuals: | 11 | BIC: | 140.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -192.0443 | 138.990 | -1.382 | 0.194 | -497.959 113.870 |
C(dose)[T.1] | 1458.5007 | 388.426 | 3.755 | 0.003 | 603.581 2313.420 |
expression | 35.9273 | 19.213 | 1.870 | 0.088 | -6.360 78.214 |
expression:C(dose)[T.1] | -186.5037 | 51.228 | -3.641 | 0.004 | -299.255 -73.753 |
Omnibus: | 1.382 | Durbin-Watson: | 1.830 |
Prob(Omnibus): | 0.501 | Jarque-Bera (JB): | 0.907 |
Skew: | 0.262 | Prob(JB): | 0.636 |
Kurtosis: | 1.915 | Cond. No. | 636. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.455 |
Model: | OLS | Adj. R-squared: | 0.365 |
Method: | Least Squares | F-statistic: | 5.018 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0261 |
Time: | 04:44:18 | Log-Likelihood: | -70.742 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 12 | BIC: | 149.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -2.5809 | 183.228 | -0.014 | 0.989 | -401.800 396.638 |
C(dose)[T.1] | 45.1829 | 18.832 | 2.399 | 0.034 | 4.151 86.215 |
expression | 9.6937 | 25.321 | 0.383 | 0.709 | -45.476 64.863 |
Omnibus: | 2.608 | Durbin-Watson: | 0.837 |
Prob(Omnibus): | 0.271 | Jarque-Bera (JB): | 1.730 |
Skew: | -0.817 | Prob(JB): | 0.421 |
Kurtosis: | 2.683 | Cond. No. | 179. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:44:18 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.194 |
Model: | OLS | Adj. R-squared: | 0.132 |
Method: | Least Squares | F-statistic: | 3.133 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.100 |
Time: | 04:44:18 | Log-Likelihood: | -73.681 |
No. Observations: | 15 | AIC: | 151.4 |
Df Residuals: | 13 | BIC: | 152.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -230.1982 | 183.199 | -1.257 | 0.231 | -625.975 165.578 |
expression | 43.5128 | 24.583 | 1.770 | 0.100 | -9.596 96.621 |
Omnibus: | 3.010 | Durbin-Watson: | 1.317 |
Prob(Omnibus): | 0.222 | Jarque-Bera (JB): | 1.223 |
Skew: | 0.233 | Prob(JB): | 0.542 |
Kurtosis: | 1.681 | Cond. No. | 152. |