AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.001 | 0.975 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.675 |
Model: | OLS | Adj. R-squared: | 0.623 |
Method: | Least Squares | F-statistic: | 13.13 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 7.09e-05 |
Time: | 04:56:01 | Log-Likelihood: | -100.20 |
No. Observations: | 23 | AIC: | 208.4 |
Df Residuals: | 19 | BIC: | 212.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -25.8262 | 155.419 | -0.166 | 0.870 | -351.122 299.470 |
C(dose)[T.1] | 544.9493 | 403.415 | 1.351 | 0.193 | -299.408 1389.307 |
expression | 9.0525 | 17.566 | 0.515 | 0.612 | -27.714 45.819 |
expression:C(dose)[T.1] | -53.7214 | 44.051 | -1.220 | 0.238 | -145.922 38.479 |
Omnibus: | 0.261 | Durbin-Watson: | 1.711 |
Prob(Omnibus): | 0.878 | Jarque-Bera (JB): | 0.294 |
Skew: | -0.214 | Prob(JB): | 0.863 |
Kurtosis: | 2.649 | Cond. No. | 986. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 04:56:01 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 49.6973 | 144.274 | 0.344 | 0.734 | -251.252 350.647 |
C(dose)[T.1] | 53.1469 | 10.671 | 4.981 | 0.000 | 30.888 75.405 |
expression | 0.5102 | 16.304 | 0.031 | 0.975 | -33.499 34.520 |
Omnibus: | 0.318 | Durbin-Watson: | 1.891 |
Prob(Omnibus): | 0.853 | Jarque-Bera (JB): | 0.483 |
Skew: | 0.064 | Prob(JB): | 0.785 |
Kurtosis: | 2.301 | Cond. No. | 302. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:56:01 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.214 |
Model: | OLS | Adj. R-squared: | 0.176 |
Method: | Least Squares | F-statistic: | 5.711 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0263 |
Time: | 04:56:01 | Log-Likelihood: | -110.34 |
No. Observations: | 23 | AIC: | 224.7 |
Df Residuals: | 21 | BIC: | 226.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -342.1513 | 176.652 | -1.937 | 0.066 | -709.518 25.216 |
expression | 46.7732 | 19.573 | 2.390 | 0.026 | 6.069 87.477 |
Omnibus: | 0.646 | Durbin-Watson: | 2.535 |
Prob(Omnibus): | 0.724 | Jarque-Bera (JB): | 0.397 |
Skew: | 0.310 | Prob(JB): | 0.820 |
Kurtosis: | 2.828 | Cond. No. | 252. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
5.104 | 0.043 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.660 |
Model: | OLS | Adj. R-squared: | 0.567 |
Method: | Least Squares | F-statistic: | 7.120 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00630 |
Time: | 04:56:01 | Log-Likelihood: | -67.208 |
No. Observations: | 15 | AIC: | 142.4 |
Df Residuals: | 11 | BIC: | 145.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 410.8910 | 428.896 | 0.958 | 0.359 | -533.102 1354.884 |
C(dose)[T.1] | 849.0794 | 628.515 | 1.351 | 0.204 | -534.274 2232.432 |
expression | -42.0836 | 52.539 | -0.801 | 0.440 | -157.721 73.554 |
expression:C(dose)[T.1] | -92.9386 | 75.518 | -1.231 | 0.244 | -259.153 73.276 |
Omnibus: | 0.368 | Durbin-Watson: | 1.236 |
Prob(Omnibus): | 0.832 | Jarque-Bera (JB): | 0.202 |
Skew: | -0.246 | Prob(JB): | 0.904 |
Kurtosis: | 2.715 | Cond. No. | 1.09e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.613 |
Model: | OLS | Adj. R-squared: | 0.549 |
Method: | Least Squares | F-statistic: | 9.514 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00335 |
Time: | 04:56:01 | Log-Likelihood: | -68.175 |
No. Observations: | 15 | AIC: | 142.4 |
Df Residuals: | 12 | BIC: | 144.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 778.0209 | 314.693 | 2.472 | 0.029 | 92.364 1463.678 |
C(dose)[T.1] | 75.8735 | 17.699 | 4.287 | 0.001 | 37.310 114.437 |
expression | -87.0671 | 38.540 | -2.259 | 0.043 | -171.040 -3.095 |
Omnibus: | 0.855 | Durbin-Watson: | 1.368 |
Prob(Omnibus): | 0.652 | Jarque-Bera (JB): | 0.782 |
Skew: | -0.448 | Prob(JB): | 0.676 |
Kurtosis: | 2.331 | Cond. No. | 405. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:56:02 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.021 |
Model: | OLS | Adj. R-squared: | -0.054 |
Method: | Least Squares | F-statistic: | 0.2786 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.606 |
Time: | 04:56:02 | Log-Likelihood: | -75.141 |
No. Observations: | 15 | AIC: | 154.3 |
Df Residuals: | 13 | BIC: | 155.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -99.1735 | 365.468 | -0.271 | 0.790 | -888.719 690.372 |
expression | 23.1644 | 43.884 | 0.528 | 0.606 | -71.642 117.971 |
Omnibus: | 0.893 | Durbin-Watson: | 1.291 |
Prob(Omnibus): | 0.640 | Jarque-Bera (JB): | 0.675 |
Skew: | 0.009 | Prob(JB): | 0.713 |
Kurtosis: | 1.961 | Cond. No. | 307. |