AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.086 | 0.772 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.659 |
Model: | OLS | Adj. R-squared: | 0.606 |
Method: | Least Squares | F-statistic: | 12.26 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000108 |
Time: | 05:12:47 | Log-Likelihood: | -100.72 |
No. Observations: | 23 | AIC: | 209.4 |
Df Residuals: | 19 | BIC: | 214.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 72.3145 | 27.651 | 2.615 | 0.017 | 14.441 130.188 |
C(dose)[T.1] | 24.5882 | 41.165 | 0.597 | 0.557 | -61.571 110.747 |
expression | -3.6738 | 5.471 | -0.672 | 0.510 | -15.125 7.777 |
expression:C(dose)[T.1] | 6.0330 | 8.580 | 0.703 | 0.490 | -11.924 23.990 |
Omnibus: | 0.279 | Durbin-Watson: | 1.880 |
Prob(Omnibus): | 0.870 | Jarque-Bera (JB): | 0.460 |
Skew: | -0.110 | Prob(JB): | 0.794 |
Kurtosis: | 2.343 | Cond. No. | 58.4 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.616 |
Method: | Least Squares | F-statistic: | 18.62 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.71e-05 |
Time: | 05:12:47 | Log-Likelihood: | -101.01 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 60.2248 | 21.380 | 2.817 | 0.011 | 15.627 104.823 |
C(dose)[T.1] | 52.8280 | 8.921 | 5.921 | 0.000 | 34.218 71.438 |
expression | -1.2208 | 4.161 | -0.293 | 0.772 | -9.900 7.458 |
Omnibus: | 0.693 | Durbin-Watson: | 1.943 |
Prob(Omnibus): | 0.707 | Jarque-Bera (JB): | 0.678 |
Skew: | 0.106 | Prob(JB): | 0.713 |
Kurtosis: | 2.187 | Cond. No. | 25.0 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:12:48 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.038 |
Model: | OLS | Adj. R-squared: | -0.008 |
Method: | Least Squares | F-statistic: | 0.8277 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.373 |
Time: | 05:12:48 | Log-Likelihood: | -112.66 |
No. Observations: | 23 | AIC: | 229.3 |
Df Residuals: | 21 | BIC: | 231.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 108.1506 | 32.044 | 3.375 | 0.003 | 41.511 174.790 |
expression | -6.0126 | 6.609 | -0.910 | 0.373 | -19.756 7.731 |
Omnibus: | 1.626 | Durbin-Watson: | 2.519 |
Prob(Omnibus): | 0.444 | Jarque-Bera (JB): | 1.344 |
Skew: | 0.430 | Prob(JB): | 0.511 |
Kurtosis: | 2.186 | Cond. No. | 22.8 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.595 | 0.455 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.484 |
Model: | OLS | Adj. R-squared: | 0.344 |
Method: | Least Squares | F-statistic: | 3.444 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0554 |
Time: | 05:12:48 | Log-Likelihood: | -70.333 |
No. Observations: | 15 | AIC: | 148.7 |
Df Residuals: | 11 | BIC: | 151.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 102.2430 | 41.727 | 2.450 | 0.032 | 10.403 194.083 |
C(dose)[T.1] | 17.8456 | 68.845 | 0.259 | 0.800 | -133.681 169.372 |
expression | -6.0891 | 7.010 | -0.869 | 0.404 | -21.517 9.339 |
expression:C(dose)[T.1] | 5.4526 | 12.100 | 0.451 | 0.661 | -21.178 32.084 |
Omnibus: | 2.381 | Durbin-Watson: | 0.997 |
Prob(Omnibus): | 0.304 | Jarque-Bera (JB): | 1.628 |
Skew: | -0.784 | Prob(JB): | 0.443 |
Kurtosis: | 2.619 | Cond. No. | 63.4 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.475 |
Model: | OLS | Adj. R-squared: | 0.387 |
Method: | Least Squares | F-statistic: | 5.425 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0210 |
Time: | 05:12:48 | Log-Likelihood: | -70.470 |
No. Observations: | 15 | AIC: | 146.9 |
Df Residuals: | 12 | BIC: | 149.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 91.7793 | 33.499 | 2.740 | 0.018 | 18.792 164.767 |
C(dose)[T.1] | 48.0232 | 15.438 | 3.111 | 0.009 | 14.386 81.660 |
expression | -4.2590 | 5.521 | -0.771 | 0.455 | -16.287 7.769 |
Omnibus: | 2.461 | Durbin-Watson: | 0.889 |
Prob(Omnibus): | 0.292 | Jarque-Bera (JB): | 1.645 |
Skew: | -0.793 | Prob(JB): | 0.439 |
Kurtosis: | 2.663 | Cond. No. | 26.2 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:12:48 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.051 |
Model: | OLS | Adj. R-squared: | -0.022 |
Method: | Least Squares | F-statistic: | 0.7036 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.417 |
Time: | 05:12:48 | Log-Likelihood: | -74.905 |
No. Observations: | 15 | AIC: | 153.8 |
Df Residuals: | 13 | BIC: | 155.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 126.8148 | 40.738 | 3.113 | 0.008 | 38.806 214.824 |
expression | -5.9506 | 7.094 | -0.839 | 0.417 | -21.276 9.375 |
Omnibus: | 1.411 | Durbin-Watson: | 1.715 |
Prob(Omnibus): | 0.494 | Jarque-Bera (JB): | 0.886 |
Skew: | 0.220 | Prob(JB): | 0.642 |
Kurtosis: | 1.894 | Cond. No. | 24.3 |