AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.870 0.362 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.673
Model: OLS Adj. R-squared: 0.622
Method: Least Squares F-statistic: 13.05
Date: Tue, 03 Dec 2024 Prob (F-statistic): 7.36e-05
Time: 11:47:08 Log-Likelihood: -100.24
No. Observations: 23 AIC: 208.5
Df Residuals: 19 BIC: 213.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -63.2042 99.207 -0.637 0.532 -270.847 144.439
C(dose)[T.1] 170.9207 161.223 1.060 0.302 -166.523 508.365
expression 17.3720 14.651 1.186 0.250 -13.294 48.038
expression:C(dose)[T.1] -17.3965 23.338 -0.745 0.465 -66.243 31.450
Omnibus: 0.163 Durbin-Watson: 2.020
Prob(Omnibus): 0.922 Jarque-Bera (JB): 0.207
Skew: 0.164 Prob(JB): 0.902
Kurtosis: 2.672 Cond. No. 324.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.664
Model: OLS Adj. R-squared: 0.630
Method: Least Squares F-statistic: 19.73
Date: Tue, 03 Dec 2024 Prob (F-statistic): 1.85e-05
Time: 11:47:08 Log-Likelihood: -100.57
No. Observations: 23 AIC: 207.1
Df Residuals: 20 BIC: 210.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -16.8630 76.449 -0.221 0.828 -176.332 142.606
C(dose)[T.1] 50.9319 8.964 5.682 0.000 32.233 69.631
expression 10.5155 11.277 0.932 0.362 -13.008 34.039
Omnibus: 0.273 Durbin-Watson: 1.961
Prob(Omnibus): 0.872 Jarque-Bera (JB): 0.153
Skew: 0.176 Prob(JB): 0.926
Kurtosis: 2.809 Cond. No. 126.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 03 Dec 2024 Prob (F-statistic): 3.51e-06
Time: 11:47:08 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.121
Model: OLS Adj. R-squared: 0.079
Method: Least Squares F-statistic: 2.886
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.104
Time: 11:47:08 Log-Likelihood: -111.62
No. Observations: 23 AIC: 227.2
Df Residuals: 21 BIC: 229.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -119.1225 117.233 -1.016 0.321 -362.922 124.677
expression 28.9512 17.041 1.699 0.104 -6.487 64.389
Omnibus: 1.909 Durbin-Watson: 2.387
Prob(Omnibus): 0.385 Jarque-Bera (JB): 1.612
Skew: 0.527 Prob(JB): 0.447
Kurtosis: 2.244 Cond. No. 122.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.170 0.687 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.470
Model: OLS Adj. R-squared: 0.326
Method: Least Squares F-statistic: 3.252
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0636
Time: 11:47:08 Log-Likelihood: -70.538
No. Observations: 15 AIC: 149.1
Df Residuals: 11 BIC: 151.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 242.1547 266.163 0.910 0.382 -343.666 827.976
C(dose)[T.1] -111.2702 301.296 -0.369 0.719 -774.418 551.877
expression -20.3097 30.908 -0.657 0.525 -88.337 47.718
expression:C(dose)[T.1] 18.6283 35.083 0.531 0.606 -58.589 95.846
Omnibus: 3.355 Durbin-Watson: 0.901
Prob(Omnibus): 0.187 Jarque-Bera (JB): 2.264
Skew: -0.940 Prob(JB): 0.322
Kurtosis: 2.703 Cond. No. 487.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.456
Model: OLS Adj. R-squared: 0.366
Method: Least Squares F-statistic: 5.039
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0258
Time: 11:47:08 Log-Likelihood: -70.727
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 117.7693 122.518 0.961 0.355 -149.174 384.713
C(dose)[T.1] 48.4787 15.726 3.083 0.009 14.216 82.742
expression -5.8515 14.179 -0.413 0.687 -36.745 25.042
Omnibus: 2.974 Durbin-Watson: 0.772
Prob(Omnibus): 0.226 Jarque-Bera (JB): 2.167
Skew: -0.895 Prob(JB): 0.338
Kurtosis: 2.491 Cond. No. 137.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00629
Time: 11:47:08 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.026
Model: OLS Adj. R-squared: -0.049
Method: Least Squares F-statistic: 0.3476
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.566
Time: 11:47:08 Log-Likelihood: -75.102
No. Observations: 15 AIC: 154.2
Df Residuals: 13 BIC: 155.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 184.8977 155.065 1.192 0.254 -150.100 519.895
expression -10.6857 18.124 -0.590 0.566 -49.841 28.470
Omnibus: 0.796 Durbin-Watson: 1.662
Prob(Omnibus): 0.672 Jarque-Bera (JB): 0.650
Skew: 0.068 Prob(JB): 0.722
Kurtosis: 1.989 Cond. No. 134.