AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.085 | 0.774 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.658 |
Model: | OLS | Adj. R-squared: | 0.604 |
Method: | Least Squares | F-statistic: | 12.20 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000112 |
Time: | 05:14:50 | Log-Likelihood: | -100.76 |
No. Observations: | 23 | AIC: | 209.5 |
Df Residuals: | 19 | BIC: | 214.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 266.4938 | 322.830 | 0.825 | 0.419 | -409.198 942.185 |
C(dose)[T.1] | -259.8729 | 483.015 | -0.538 | 0.597 | -1270.835 751.089 |
expression | -20.9460 | 31.848 | -0.658 | 0.519 | -87.604 45.712 |
expression:C(dose)[T.1] | 30.4855 | 46.553 | 0.655 | 0.520 | -66.951 127.922 |
Omnibus: | 0.218 | Durbin-Watson: | 1.900 |
Prob(Omnibus): | 0.897 | Jarque-Bera (JB): | 0.418 |
Skew: | 0.034 | Prob(JB): | 0.811 |
Kurtosis: | 2.343 | Cond. No. | 1.45e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.616 |
Method: | Least Squares | F-statistic: | 18.62 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.72e-05 |
Time: | 05:14:50 | Log-Likelihood: | -101.01 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 121.8929 | 232.114 | 0.525 | 0.605 | -362.289 606.075 |
C(dose)[T.1] | 56.3071 | 13.426 | 4.194 | 0.000 | 28.302 84.313 |
expression | -6.6784 | 22.895 | -0.292 | 0.774 | -54.436 41.079 |
Omnibus: | 0.467 | Durbin-Watson: | 1.870 |
Prob(Omnibus): | 0.792 | Jarque-Bera (JB): | 0.570 |
Skew: | 0.099 | Prob(JB): | 0.752 |
Kurtosis: | 2.255 | Cond. No. | 556. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:14:50 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.343 |
Model: | OLS | Adj. R-squared: | 0.312 |
Method: | Least Squares | F-statistic: | 10.97 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00331 |
Time: | 05:14:50 | Log-Likelihood: | -108.27 |
No. Observations: | 23 | AIC: | 220.5 |
Df Residuals: | 21 | BIC: | 222.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -604.6713 | 206.684 | -2.926 | 0.008 | -1034.493 -174.849 |
expression | 66.1399 | 19.966 | 3.313 | 0.003 | 24.618 107.662 |
Omnibus: | 3.645 | Durbin-Watson: | 2.301 |
Prob(Omnibus): | 0.162 | Jarque-Bera (JB): | 1.513 |
Skew: | -0.201 | Prob(JB): | 0.469 |
Kurtosis: | 1.810 | Cond. No. | 369. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.002 | 0.182 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.536 |
Model: | OLS | Adj. R-squared: | 0.410 |
Method: | Least Squares | F-statistic: | 4.239 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0321 |
Time: | 05:14:50 | Log-Likelihood: | -69.538 |
No. Observations: | 15 | AIC: | 147.1 |
Df Residuals: | 11 | BIC: | 149.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 240.8613 | 449.179 | 0.536 | 0.602 | -747.775 1229.497 |
C(dose)[T.1] | 298.5299 | 542.906 | 0.550 | 0.593 | -896.398 1493.458 |
expression | -17.9677 | 46.521 | -0.386 | 0.707 | -120.360 84.425 |
expression:C(dose)[T.1] | -25.2977 | 56.009 | -0.452 | 0.660 | -148.572 97.977 |
Omnibus: | 0.250 | Durbin-Watson: | 0.937 |
Prob(Omnibus): | 0.882 | Jarque-Bera (JB): | 0.426 |
Skew: | -0.116 | Prob(JB): | 0.808 |
Kurtosis: | 2.207 | Cond. No. | 1.03e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.528 |
Model: | OLS | Adj. R-squared: | 0.449 |
Method: | Least Squares | F-statistic: | 6.701 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0111 |
Time: | 05:14:50 | Log-Likelihood: | -69.676 |
No. Observations: | 15 | AIC: | 145.4 |
Df Residuals: | 12 | BIC: | 147.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 409.3266 | 241.852 | 1.692 | 0.116 | -117.625 936.278 |
C(dose)[T.1] | 53.4115 | 14.872 | 3.591 | 0.004 | 21.008 85.815 |
expression | -35.4208 | 25.032 | -1.415 | 0.182 | -89.960 19.119 |
Omnibus: | 0.481 | Durbin-Watson: | 0.836 |
Prob(Omnibus): | 0.786 | Jarque-Bera (JB): | 0.544 |
Skew: | -0.125 | Prob(JB): | 0.762 |
Kurtosis: | 2.101 | Cond. No. | 327. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:14:50 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.020 |
Model: | OLS | Adj. R-squared: | -0.056 |
Method: | Least Squares | F-statistic: | 0.2633 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.616 |
Time: | 05:14:50 | Log-Likelihood: | -75.150 |
No. Observations: | 15 | AIC: | 154.3 |
Df Residuals: | 13 | BIC: | 155.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 262.8705 | 329.911 | 0.797 | 0.440 | -449.858 975.599 |
expression | -17.4151 | 33.940 | -0.513 | 0.616 | -90.738 55.908 |
Omnibus: | 0.465 | Durbin-Watson: | 1.677 |
Prob(Omnibus): | 0.793 | Jarque-Bera (JB): | 0.538 |
Skew: | 0.131 | Prob(JB): | 0.764 |
Kurtosis: | 2.110 | Cond. No. | 322. |