AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.619 | 0.441 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.670 |
Model: | OLS | Adj. R-squared: | 0.617 |
Method: | Least Squares | F-statistic: | 12.83 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 8.18e-05 |
Time: | 03:39:36 | Log-Likelihood: | -100.37 |
No. Observations: | 23 | AIC: | 208.7 |
Df Residuals: | 19 | BIC: | 213.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 156.0996 | 279.450 | 0.559 | 0.583 | -428.797 740.996 |
C(dose)[T.1] | -172.6460 | 304.795 | -0.566 | 0.578 | -810.590 465.298 |
expression | -12.5436 | 34.394 | -0.365 | 0.719 | -84.532 59.445 |
expression:C(dose)[T.1] | 28.5390 | 37.794 | 0.755 | 0.459 | -50.564 107.642 |
Omnibus: | 0.858 | Durbin-Watson: | 1.682 |
Prob(Omnibus): | 0.651 | Jarque-Bera (JB): | 0.279 |
Skew: | -0.266 | Prob(JB): | 0.870 |
Kurtosis: | 3.092 | Cond. No. | 842. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.660 |
Model: | OLS | Adj. R-squared: | 0.626 |
Method: | Least Squares | F-statistic: | 19.38 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.09e-05 |
Time: | 03:39:36 | Log-Likelihood: | -100.71 |
No. Observations: | 23 | AIC: | 207.4 |
Df Residuals: | 20 | BIC: | 210.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -35.8980 | 114.702 | -0.313 | 0.758 | -275.161 203.365 |
C(dose)[T.1] | 57.3859 | 10.054 | 5.707 | 0.000 | 36.413 78.359 |
expression | 11.0928 | 14.102 | 0.787 | 0.441 | -18.322 40.508 |
Omnibus: | 0.224 | Durbin-Watson: | 1.906 |
Prob(Omnibus): | 0.894 | Jarque-Bera (JB): | 0.122 |
Skew: | -0.150 | Prob(JB): | 0.941 |
Kurtosis: | 2.807 | Cond. No. | 215. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:39:37 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.105 |
Model: | OLS | Adj. R-squared: | 0.063 |
Method: | Least Squares | F-statistic: | 2.467 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.131 |
Time: | 03:39:37 | Log-Likelihood: | -111.83 |
No. Observations: | 23 | AIC: | 227.7 |
Df Residuals: | 21 | BIC: | 229.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 319.0212 | 152.503 | 2.092 | 0.049 | 1.874 636.169 |
expression | -30.1072 | 19.167 | -1.571 | 0.131 | -69.968 9.754 |
Omnibus: | 2.678 | Durbin-Watson: | 2.400 |
Prob(Omnibus): | 0.262 | Jarque-Bera (JB): | 2.270 |
Skew: | 0.721 | Prob(JB): | 0.321 |
Kurtosis: | 2.465 | Cond. No. | 181. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.296 | 0.596 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.483 |
Model: | OLS | Adj. R-squared: | 0.342 |
Method: | Least Squares | F-statistic: | 3.420 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0563 |
Time: | 03:39:37 | Log-Likelihood: | -70.358 |
No. Observations: | 15 | AIC: | 148.7 |
Df Residuals: | 11 | BIC: | 151.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -151.5320 | 262.994 | -0.576 | 0.576 | -730.377 427.313 |
C(dose)[T.1] | 317.9062 | 411.070 | 0.773 | 0.456 | -586.852 1222.665 |
expression | 26.2465 | 31.494 | 0.833 | 0.422 | -43.071 95.564 |
expression:C(dose)[T.1] | -32.0534 | 48.478 | -0.661 | 0.522 | -138.753 74.646 |
Omnibus: | 1.902 | Durbin-Watson: | 1.030 |
Prob(Omnibus): | 0.386 | Jarque-Bera (JB): | 1.344 |
Skew: | -0.699 | Prob(JB): | 0.511 |
Kurtosis: | 2.558 | Cond. No. | 571. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.462 |
Model: | OLS | Adj. R-squared: | 0.372 |
Method: | Least Squares | F-statistic: | 5.153 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0242 |
Time: | 03:39:37 | Log-Likelihood: | -70.650 |
No. Observations: | 15 | AIC: | 147.3 |
Df Residuals: | 12 | BIC: | 149.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -38.6744 | 195.330 | -0.198 | 0.846 | -464.262 386.914 |
C(dose)[T.1] | 46.3365 | 16.413 | 2.823 | 0.015 | 10.575 82.098 |
expression | 12.7184 | 23.374 | 0.544 | 0.596 | -38.210 63.647 |
Omnibus: | 3.189 | Durbin-Watson: | 0.803 |
Prob(Omnibus): | 0.203 | Jarque-Bera (JB): | 2.071 |
Skew: | -0.903 | Prob(JB): | 0.355 |
Kurtosis: | 2.768 | Cond. No. | 217. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:39:37 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.105 |
Model: | OLS | Adj. R-squared: | 0.036 |
Method: | Least Squares | F-statistic: | 1.521 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.239 |
Time: | 03:39:37 | Log-Likelihood: | -74.470 |
No. Observations: | 15 | AIC: | 152.9 |
Df Residuals: | 13 | BIC: | 154.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -192.7859 | 232.448 | -0.829 | 0.422 | -694.960 309.388 |
expression | 33.8501 | 27.445 | 1.233 | 0.239 | -25.441 93.141 |
Omnibus: | 1.343 | Durbin-Watson: | 1.413 |
Prob(Omnibus): | 0.511 | Jarque-Bera (JB): | 0.857 |
Skew: | 0.201 | Prob(JB): | 0.651 |
Kurtosis: | 1.900 | Cond. No. | 208. |