AIM Score vs. Gene Expression 
		Full X range:
		
		 
			
		
		Auto X range:
		
		 
		
		
		
		Group Comparisons: Boxplots
		
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  0.615  |   0.442  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.663 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.609 | 
  | Method: |              Least Squares |     F-statistic:        |     12.43 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  9.93e-05 | 
  | Time: |                  09:35:18 |        Log-Likelihood:     |   -100.61 | 
  | No. Observations: |           23 |         AIC:                |     209.2 | 
  | Df Residuals: |               19 |         BIC:                |     213.8 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                  184.4529 |    172.501 |      1.069 |   0.298 |   -176.595   545.501 | 
  | C(dose)[T.1] |               -33.1120 |    199.911 |     -0.166 |   0.870 |   -451.531   385.307 | 
  | expression |                 -14.0961 |     18.658 |     -0.756 |   0.459 |    -53.147    24.955 | 
  | expression:C(dose)[T.1] |      9.0522 |     21.977 |      0.412 |   0.685 |    -36.945    55.050 | 
  | Omnibus: |         0.490 |    Durbin-Watson:      |     1.890 | 
  | Prob(Omnibus): |   0.783 |    Jarque-Bera (JB):   |     0.576 | 
  | Skew: |           -0.065 |    Prob(JB):           |     0.750 | 
  | Kurtosis: |        2.236 |    Cond. No.           |      589. | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.660 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.625 | 
  | Method: |              Least Squares |     F-statistic:        |     19.37 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  2.09e-05 | 
  | Time: |                  09:35:18 |        Log-Likelihood:     |   -100.71 | 
  | No. Observations: |           23 |         AIC:                |     207.4 | 
  | Df Residuals: |               20 |         BIC:                |     210.8 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |       124.1669 |     89.384 |      1.389 |   0.180 |    -62.285   310.619 | 
  | C(dose)[T.1] |     49.1211 |     10.174 |      4.828 |   0.000 |     27.899    70.343 | 
  | expression |       -7.5715 |      9.652 |     -0.784 |   0.442 |    -27.706    12.563 | 
  | Omnibus: |         0.459 |    Durbin-Watson:      |     1.944 | 
  | Prob(Omnibus): |   0.795 |    Jarque-Bera (JB):   |     0.558 | 
  | Skew: |            0.041 |    Prob(JB):           |     0.757 | 
  | Kurtosis: |        2.242 |    Cond. No.           |      189. | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.649 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.632 | 
  | Method: |              Least Squares |     F-statistic:        |     38.84 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  3.51e-06 | 
  | Time: |                  09:35:18 |        Log-Likelihood:     |   -101.06 | 
  | No. Observations: |           23 |         AIC:                |     206.1 | 
  | Df Residuals: |               21 |         BIC:                |     208.4 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        54.2083 |      5.919 |      9.159 |   0.000 |     41.900    66.517 | 
  | C(dose)[T.1] |     53.3371 |      8.558 |      6.232 |   0.000 |     35.539    71.135 | 
  | Omnibus: |         0.322 |    Durbin-Watson:      |     1.888 | 
  | Prob(Omnibus): |   0.851 |    Jarque-Bera (JB):   |     0.485 | 
  | Skew: |            0.060 |    Prob(JB):           |     0.785 | 
  | Kurtosis: |        2.299 |    Cond. No.           |      2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.263 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.228 | 
  | Method: |              Least Squares |     F-statistic:        |     7.481 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0124 |  
  | Time: |                  09:35:18 |        Log-Likelihood:     |   -109.60 | 
  | No. Observations: |           23 |         AIC:                |     223.2 | 
  | Df Residuals: |               21 |         BIC:                |     225.5 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |     368.5924 |    105.796 |      3.484 |   0.002 |    148.578   588.607 | 
  | expression |    -32.1922 |     11.770 |     -2.735 |   0.012 |    -56.669    -7.716 | 
  | Omnibus: |         1.635 |    Durbin-Watson:      |     2.446 | 
  | Prob(Omnibus): |   0.442 |    Jarque-Bera (JB):   |     1.033 | 
  | Skew: |            0.518 |    Prob(JB):           |     0.597 | 
  | Kurtosis: |        2.918 |    Cond. No.           |      155. | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  0.690  |   0.422  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.519 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.388 | 
  | Method: |              Least Squares |     F-statistic:        |     3.955 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0388 |  
  | Time: |                  09:35:18 |        Log-Likelihood:     |   -69.813 | 
  | No. Observations: |           15 |         AIC:                |     147.6 | 
  | Df Residuals: |               11 |         BIC:                |     150.5 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                  468.0861 |    318.178 |      1.471 |   0.169 |   -232.219  1168.391 | 
  | C(dose)[T.1] |              -324.6291 |    384.002 |     -0.845 |   0.416 |  -1169.811   520.553 | 
  | expression |                 -41.9331 |     33.280 |     -1.260 |   0.234 |   -115.182    31.316 | 
  | expression:C(dose)[T.1] |     39.0016 |     40.718 |      0.958 |   0.359 |    -50.617   128.621 | 
  | Omnibus: |         2.089 |    Durbin-Watson:      |     0.990 | 
  | Prob(Omnibus): |   0.352 |    Jarque-Bera (JB):   |     1.384 | 
  | Skew: |           -0.724 |    Prob(JB):           |     0.501 | 
  | Kurtosis: |        2.660 |    Cond. No.           |      678. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.479 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.392 | 
  | Method: |              Least Squares |     F-statistic:        |     5.511 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0201 |  
  | Time: |                  09:35:18 |        Log-Likelihood:     |   -70.413 | 
  | No. Observations: |           15 |         AIC:                |     146.8 | 
  | Df Residuals: |               12 |         BIC:                |     149.0 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |       219.1434 |    182.919 |      1.198 |   0.254 |   -179.403   617.690 | 
  | C(dose)[T.1] |     42.8200 |     17.121 |      2.501 |   0.028 |      5.516    80.124 | 
  | expression |      -15.8786 |     19.109 |     -0.831 |   0.422 |    -57.513    25.756 | 
  | Omnibus: |         2.010 |    Durbin-Watson:      |     0.725 | 
  | Prob(Omnibus): |   0.366 |    Jarque-Bera (JB):   |     1.568 | 
  | Skew: |           -0.689 |    Prob(JB):           |     0.457 | 
  | Kurtosis: |        2.218 |    Cond. No.           |      227. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.449 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.406 | 
  | Method: |              Least Squares |     F-statistic:        |     10.58 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.00629 | 
  | Time: |                  09:35:18 |        Log-Likelihood:     |   -70.833 | 
  | No. Observations: |           15 |         AIC:                |     145.7 | 
  | Df Residuals: |               13 |         BIC:                |     147.1 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        67.4286 |     11.044 |      6.106 |   0.000 |     43.570    91.287 | 
  | C(dose)[T.1] |     49.1964 |     15.122 |      3.253 |   0.006 |     16.527    81.866 | 
  | Omnibus: |         2.713 |    Durbin-Watson:      |     0.810 | 
  | Prob(Omnibus): |   0.258 |    Jarque-Bera (JB):   |     1.868 | 
  | Skew: |           -0.843 |    Prob(JB):           |     0.393 | 
  | Kurtosis: |        2.619 |    Cond. No.           |      2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.207 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.146 | 
  | Method: |              Least Squares |     F-statistic:        |     3.395 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0883 |  
  | Time: |                  09:35:18 |        Log-Likelihood:     |   -73.560 | 
  | No. Observations: |           15 |         AIC:                |     151.1 | 
  | Df Residuals: |               13 |         BIC:                |     152.5 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |     442.0451 |    189.288 |      2.335 |   0.036 |     33.113   850.977 | 
  | expression |    -37.2975 |     20.242 |     -1.843 |   0.088 |    -81.028     6.433 | 
  | Omnibus: |         1.991 |    Durbin-Watson:      |     1.447 | 
  | Prob(Omnibus): |   0.370 |    Jarque-Bera (JB):   |     1.340 | 
  | Skew: |            0.507 |    Prob(JB):           |     0.512 | 
  | Kurtosis: |        1.943 |    Cond. No.           |      198. |