AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.615 | 0.442 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.663 |
Model: | OLS | Adj. R-squared: | 0.609 |
Method: | Least Squares | F-statistic: | 12.43 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 9.93e-05 |
Time: | 11:47:36 | Log-Likelihood: | -100.61 |
No. Observations: | 23 | AIC: | 209.2 |
Df Residuals: | 19 | BIC: | 213.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 184.4529 | 172.501 | 1.069 | 0.298 | -176.595 545.501 |
C(dose)[T.1] | -33.1120 | 199.911 | -0.166 | 0.870 | -451.531 385.307 |
expression | -14.0961 | 18.658 | -0.756 | 0.459 | -53.147 24.955 |
expression:C(dose)[T.1] | 9.0522 | 21.977 | 0.412 | 0.685 | -36.945 55.050 |
Omnibus: | 0.490 | Durbin-Watson: | 1.890 |
Prob(Omnibus): | 0.783 | Jarque-Bera (JB): | 0.576 |
Skew: | -0.065 | Prob(JB): | 0.750 |
Kurtosis: | 2.236 | Cond. No. | 589. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.660 |
Model: | OLS | Adj. R-squared: | 0.625 |
Method: | Least Squares | F-statistic: | 19.37 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 2.09e-05 |
Time: | 11:47:36 | Log-Likelihood: | -100.71 |
No. Observations: | 23 | AIC: | 207.4 |
Df Residuals: | 20 | BIC: | 210.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 124.1669 | 89.384 | 1.389 | 0.180 | -62.285 310.619 |
C(dose)[T.1] | 49.1211 | 10.174 | 4.828 | 0.000 | 27.899 70.343 |
expression | -7.5715 | 9.652 | -0.784 | 0.442 | -27.706 12.563 |
Omnibus: | 0.459 | Durbin-Watson: | 1.944 |
Prob(Omnibus): | 0.795 | Jarque-Bera (JB): | 0.558 |
Skew: | 0.041 | Prob(JB): | 0.757 |
Kurtosis: | 2.242 | Cond. No. | 189. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 11:47:36 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.263 |
Model: | OLS | Adj. R-squared: | 0.228 |
Method: | Least Squares | F-statistic: | 7.481 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.0124 |
Time: | 11:47:36 | Log-Likelihood: | -109.60 |
No. Observations: | 23 | AIC: | 223.2 |
Df Residuals: | 21 | BIC: | 225.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 368.5924 | 105.796 | 3.484 | 0.002 | 148.578 588.607 |
expression | -32.1922 | 11.770 | -2.735 | 0.012 | -56.669 -7.716 |
Omnibus: | 1.635 | Durbin-Watson: | 2.446 |
Prob(Omnibus): | 0.442 | Jarque-Bera (JB): | 1.033 |
Skew: | 0.518 | Prob(JB): | 0.597 |
Kurtosis: | 2.918 | Cond. No. | 155. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.690 | 0.422 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.519 |
Model: | OLS | Adj. R-squared: | 0.388 |
Method: | Least Squares | F-statistic: | 3.955 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.0388 |
Time: | 11:47:36 | Log-Likelihood: | -69.813 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 11 | BIC: | 150.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 468.0861 | 318.178 | 1.471 | 0.169 | -232.219 1168.391 |
C(dose)[T.1] | -324.6291 | 384.002 | -0.845 | 0.416 | -1169.811 520.553 |
expression | -41.9331 | 33.280 | -1.260 | 0.234 | -115.182 31.316 |
expression:C(dose)[T.1] | 39.0016 | 40.718 | 0.958 | 0.359 | -50.617 128.621 |
Omnibus: | 2.089 | Durbin-Watson: | 0.990 |
Prob(Omnibus): | 0.352 | Jarque-Bera (JB): | 1.384 |
Skew: | -0.724 | Prob(JB): | 0.501 |
Kurtosis: | 2.660 | Cond. No. | 678. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.479 |
Model: | OLS | Adj. R-squared: | 0.392 |
Method: | Least Squares | F-statistic: | 5.511 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.0201 |
Time: | 11:47:37 | Log-Likelihood: | -70.413 |
No. Observations: | 15 | AIC: | 146.8 |
Df Residuals: | 12 | BIC: | 149.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 219.1434 | 182.919 | 1.198 | 0.254 | -179.403 617.690 |
C(dose)[T.1] | 42.8200 | 17.121 | 2.501 | 0.028 | 5.516 80.124 |
expression | -15.8786 | 19.109 | -0.831 | 0.422 | -57.513 25.756 |
Omnibus: | 2.010 | Durbin-Watson: | 0.725 |
Prob(Omnibus): | 0.366 | Jarque-Bera (JB): | 1.568 |
Skew: | -0.689 | Prob(JB): | 0.457 |
Kurtosis: | 2.218 | Cond. No. | 227. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.00629 |
Time: | 11:47:37 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.207 |
Model: | OLS | Adj. R-squared: | 0.146 |
Method: | Least Squares | F-statistic: | 3.395 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.0883 |
Time: | 11:47:37 | Log-Likelihood: | -73.560 |
No. Observations: | 15 | AIC: | 151.1 |
Df Residuals: | 13 | BIC: | 152.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 442.0451 | 189.288 | 2.335 | 0.036 | 33.113 850.977 |
expression | -37.2975 | 20.242 | -1.843 | 0.088 | -81.028 6.433 |
Omnibus: | 1.991 | Durbin-Watson: | 1.447 |
Prob(Omnibus): | 0.370 | Jarque-Bera (JB): | 1.340 |
Skew: | 0.507 | Prob(JB): | 0.512 |
Kurtosis: | 1.943 | Cond. No. | 198. |