AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.000 | 0.988 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.597 |
Method: | Least Squares | F-statistic: | 11.85 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.000133 |
Time: | 22:56:41 | Log-Likelihood: | -100.98 |
No. Observations: | 23 | AIC: | 210.0 |
Df Residuals: | 19 | BIC: | 214.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 21.0822 | 139.571 | 0.151 | 0.882 | -271.044 313.208 |
C(dose)[T.1] | 139.8665 | 228.680 | 0.612 | 0.548 | -338.766 618.499 |
expression | 4.2554 | 17.912 | 0.238 | 0.815 | -33.234 41.745 |
expression:C(dose)[T.1] | -11.3815 | 30.073 | -0.378 | 0.709 | -74.325 51.562 |
Omnibus: | 0.129 | Durbin-Watson: | 1.924 |
Prob(Omnibus): | 0.938 | Jarque-Bera (JB): | 0.339 |
Skew: | 0.094 | Prob(JB): | 0.844 |
Kurtosis: | 2.436 | Cond. No. | 484. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.49 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.83e-05 |
Time: | 22:56:41 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 52.5128 | 109.746 | 0.478 | 0.637 | -176.413 281.439 |
C(dose)[T.1] | 53.4004 | 9.676 | 5.519 | 0.000 | 33.216 73.585 |
expression | 0.2178 | 14.076 | 0.015 | 0.988 | -29.145 29.581 |
Omnibus: | 0.321 | Durbin-Watson: | 1.887 |
Prob(Omnibus): | 0.852 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.058 | Prob(JB): | 0.785 |
Kurtosis: | 2.298 | Cond. No. | 195. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:56:41 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.115 |
Model: | OLS | Adj. R-squared: | 0.072 |
Method: | Least Squares | F-statistic: | 2.719 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.114 |
Time: | 22:56:41 | Log-Likelihood: | -111.70 |
No. Observations: | 23 | AIC: | 227.4 |
Df Residuals: | 21 | BIC: | 229.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 329.0378 | 151.347 | 2.174 | 0.041 | 14.294 643.782 |
expression | -32.6097 | 19.775 | -1.649 | 0.114 | -73.735 8.516 |
Omnibus: | 0.463 | Durbin-Watson: | 2.436 |
Prob(Omnibus): | 0.793 | Jarque-Bera (JB): | 0.585 |
Skew: | 0.239 | Prob(JB): | 0.746 |
Kurtosis: | 2.381 | Cond. No. | 173. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.817 | 0.384 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.509 |
Model: | OLS | Adj. R-squared: | 0.376 |
Method: | Least Squares | F-statistic: | 3.808 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0429 |
Time: | 22:56:41 | Log-Likelihood: | -69.958 |
No. Observations: | 15 | AIC: | 147.9 |
Df Residuals: | 11 | BIC: | 150.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -223.5473 | 249.806 | -0.895 | 0.390 | -773.367 326.273 |
C(dose)[T.1] | 351.4071 | 406.475 | 0.865 | 0.406 | -543.239 1246.053 |
expression | 37.7420 | 32.369 | 1.166 | 0.268 | -33.501 108.985 |
expression:C(dose)[T.1] | -39.1576 | 51.751 | -0.757 | 0.465 | -153.061 74.746 |
Omnibus: | 2.305 | Durbin-Watson: | 0.916 |
Prob(Omnibus): | 0.316 | Jarque-Bera (JB): | 1.458 |
Skew: | -0.752 | Prob(JB): | 0.482 |
Kurtosis: | 2.739 | Cond. No. | 531. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.484 |
Model: | OLS | Adj. R-squared: | 0.398 |
Method: | Least Squares | F-statistic: | 5.626 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0189 |
Time: | 22:56:41 | Log-Likelihood: | -70.339 |
No. Observations: | 15 | AIC: | 146.7 |
Df Residuals: | 12 | BIC: | 148.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -105.4460 | 191.535 | -0.551 | 0.592 | -522.765 311.873 |
C(dose)[T.1] | 44.1025 | 16.238 | 2.716 | 0.019 | 8.722 79.483 |
expression | 22.4233 | 24.802 | 0.904 | 0.384 | -31.615 76.462 |
Omnibus: | 1.198 | Durbin-Watson: | 0.832 |
Prob(Omnibus): | 0.549 | Jarque-Bera (JB): | 1.008 |
Skew: | -0.536 | Prob(JB): | 0.604 |
Kurtosis: | 2.321 | Cond. No. | 201. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:56:41 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.167 |
Model: | OLS | Adj. R-squared: | 0.103 |
Method: | Least Squares | F-statistic: | 2.601 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.131 |
Time: | 22:56:41 | Log-Likelihood: | -73.932 |
No. Observations: | 15 | AIC: | 151.9 |
Df Residuals: | 13 | BIC: | 153.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -264.9481 | 222.573 | -1.190 | 0.255 | -745.789 215.893 |
expression | 45.7957 | 28.398 | 1.613 | 0.131 | -15.555 107.146 |
Omnibus: | 2.118 | Durbin-Watson: | 1.297 |
Prob(Omnibus): | 0.347 | Jarque-Bera (JB): | 1.455 |
Skew: | 0.560 | Prob(JB): | 0.483 |
Kurtosis: | 1.964 | Cond. No. | 191. |