AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.010 | 0.922 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.596 |
Method: | Least Squares | F-statistic: | 11.83 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000135 |
Time: | 05:01:53 | Log-Likelihood: | -100.99 |
No. Observations: | 23 | AIC: | 210.0 |
Df Residuals: | 19 | BIC: | 214.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 14.4284 | 398.169 | 0.036 | 0.971 | -818.948 847.805 |
C(dose)[T.1] | 288.0875 | 715.032 | 0.403 | 0.692 | -1208.491 1784.666 |
expression | 3.9341 | 39.373 | 0.100 | 0.921 | -78.474 86.343 |
expression:C(dose)[T.1] | -23.6002 | 71.684 | -0.329 | 0.746 | -173.636 126.435 |
Omnibus: | 0.217 | Durbin-Watson: | 1.849 |
Prob(Omnibus): | 0.897 | Jarque-Bera (JB): | 0.418 |
Skew: | 0.020 | Prob(JB): | 0.811 |
Kurtosis: | 2.341 | Cond. No. | 1.93e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.51 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.82e-05 |
Time: | 05:01:53 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 86.4210 | 325.246 | 0.266 | 0.793 | -592.031 764.873 |
C(dose)[T.1] | 52.7080 | 10.826 | 4.869 | 0.000 | 30.125 75.291 |
expression | -3.1857 | 32.160 | -0.099 | 0.922 | -70.271 63.899 |
Omnibus: | 0.300 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.861 | Jarque-Bera (JB): | 0.471 |
Skew: | 0.052 | Prob(JB): | 0.790 |
Kurtosis: | 2.306 | Cond. No. | 752. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:01:53 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.234 |
Model: | OLS | Adj. R-squared: | 0.197 |
Method: | Least Squares | F-statistic: | 6.398 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0195 |
Time: | 05:01:53 | Log-Likelihood: | -110.05 |
No. Observations: | 23 | AIC: | 224.1 |
Df Residuals: | 21 | BIC: | 226.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 1031.7093 | 376.418 | 2.741 | 0.012 | 248.904 1814.514 |
expression | -95.0368 | 37.572 | -2.529 | 0.019 | -173.173 -16.901 |
Omnibus: | 2.042 | Durbin-Watson: | 2.302 |
Prob(Omnibus): | 0.360 | Jarque-Bera (JB): | 1.130 |
Skew: | 0.151 | Prob(JB): | 0.568 |
Kurtosis: | 1.957 | Cond. No. | 603. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.140 | 0.715 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.525 |
Model: | OLS | Adj. R-squared: | 0.396 |
Method: | Least Squares | F-statistic: | 4.059 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0362 |
Time: | 05:01:53 | Log-Likelihood: | -69.711 |
No. Observations: | 15 | AIC: | 147.4 |
Df Residuals: | 11 | BIC: | 150.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -1818.5841 | 1425.706 | -1.276 | 0.228 | -4956.543 1319.374 |
C(dose)[T.1] | 2034.8143 | 1557.469 | 1.306 | 0.218 | -1393.152 5462.780 |
expression | 175.3912 | 132.581 | 1.323 | 0.213 | -116.417 467.199 |
expression:C(dose)[T.1] | -184.5916 | 144.673 | -1.276 | 0.228 | -503.015 133.832 |
Omnibus: | 2.539 | Durbin-Watson: | 0.730 |
Prob(Omnibus): | 0.281 | Jarque-Bera (JB): | 1.393 |
Skew: | -0.746 | Prob(JB): | 0.498 |
Kurtosis: | 2.954 | Cond. No. | 3.44e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.455 |
Model: | OLS | Adj. R-squared: | 0.364 |
Method: | Least Squares | F-statistic: | 5.012 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0262 |
Time: | 05:01:53 | Log-Likelihood: | -70.746 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 12 | BIC: | 149.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -151.5975 | 585.447 | -0.259 | 0.800 | -1427.176 1123.981 |
C(dose)[T.1] | 47.7093 | 16.145 | 2.955 | 0.012 | 12.532 82.887 |
expression | 20.3685 | 54.434 | 0.374 | 0.715 | -98.232 138.969 |
Omnibus: | 2.572 | Durbin-Watson: | 0.775 |
Prob(Omnibus): | 0.276 | Jarque-Bera (JB): | 1.872 |
Skew: | -0.827 | Prob(JB): | 0.392 |
Kurtosis: | 2.489 | Cond. No. | 817. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:01:53 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.059 |
Model: | OLS | Adj. R-squared: | -0.014 |
Method: | Least Squares | F-statistic: | 0.8100 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.385 |
Time: | 05:01:53 | Log-Likelihood: | -74.847 |
No. Observations: | 15 | AIC: | 153.7 |
Df Residuals: | 13 | BIC: | 155.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -553.4487 | 719.103 | -0.770 | 0.455 | -2106.976 1000.079 |
expression | 59.9619 | 66.626 | 0.900 | 0.385 | -83.975 203.899 |
Omnibus: | 1.996 | Durbin-Watson: | 1.568 |
Prob(Omnibus): | 0.369 | Jarque-Bera (JB): | 1.090 |
Skew: | 0.300 | Prob(JB): | 0.580 |
Kurtosis: | 1.823 | Cond. No. | 794. |