AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.016 0.902 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.597
Method: Least Squares F-statistic: 11.87
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000132
Time: 04:53:06 Log-Likelihood: -100.96
No. Observations: 23 AIC: 209.9
Df Residuals: 19 BIC: 214.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 37.6367 126.442 0.298 0.769 -227.009 302.282
C(dose)[T.1] 135.5390 213.611 0.635 0.533 -311.555 582.633
expression 2.0551 15.662 0.131 0.897 -30.725 34.835
expression:C(dose)[T.1] -10.0867 26.241 -0.384 0.705 -65.009 44.836
Omnibus: 0.569 Durbin-Watson: 1.831
Prob(Omnibus): 0.753 Jarque-Bera (JB): 0.623
Skew: 0.112 Prob(JB): 0.732
Kurtosis: 2.225 Cond. No. 480.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.52
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.81e-05
Time: 04:53:06 Log-Likelihood: -101.05
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 66.6100 99.333 0.671 0.510 -140.595 273.815
C(dose)[T.1] 53.5029 8.866 6.035 0.000 35.009 71.997
expression -1.5380 12.296 -0.125 0.902 -27.186 24.110
Omnibus: 0.332 Durbin-Watson: 1.904
Prob(Omnibus): 0.847 Jarque-Bera (JB): 0.494
Skew: 0.090 Prob(JB): 0.781
Kurtosis: 2.305 Cond. No. 187.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:53:06 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.011
Model: OLS Adj. R-squared: -0.036
Method: Least Squares F-statistic: 0.2300
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.637
Time: 04:53:06 Log-Likelihood: -112.98
No. Observations: 23 AIC: 230.0
Df Residuals: 21 BIC: 232.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 2.1717 161.868 0.013 0.989 -334.451 338.794
expression 9.5555 19.926 0.480 0.637 -31.884 50.995
Omnibus: 2.985 Durbin-Watson: 2.460
Prob(Omnibus): 0.225 Jarque-Bera (JB): 1.470
Skew: 0.267 Prob(JB): 0.479
Kurtosis: 1.882 Cond. No. 186.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.614 0.228 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.521
Model: OLS Adj. R-squared: 0.390
Method: Least Squares F-statistic: 3.985
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0380
Time: 04:53:06 Log-Likelihood: -69.783
No. Observations: 15 AIC: 147.6
Df Residuals: 11 BIC: 150.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 268.9176 157.106 1.712 0.115 -76.870 614.706
C(dose)[T.1] -157.2624 507.102 -0.310 0.762 -1273.387 958.862
expression -20.6565 16.065 -1.286 0.225 -56.016 14.703
expression:C(dose)[T.1] 21.1888 54.074 0.392 0.703 -97.826 140.204
Omnibus: 2.442 Durbin-Watson: 1.041
Prob(Omnibus): 0.295 Jarque-Bera (JB): 1.458
Skew: -0.759 Prob(JB): 0.482
Kurtosis: 2.832 Cond. No. 740.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.514
Model: OLS Adj. R-squared: 0.433
Method: Least Squares F-statistic: 6.348
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0132
Time: 04:53:06 Log-Likelihood: -69.887
No. Observations: 15 AIC: 145.8
Df Residuals: 12 BIC: 147.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 250.6738 144.660 1.733 0.109 -64.513 565.861
C(dose)[T.1] 41.3391 16.020 2.581 0.024 6.435 76.243
expression -18.7861 14.789 -1.270 0.228 -51.009 13.437
Omnibus: 2.957 Durbin-Watson: 0.925
Prob(Omnibus): 0.228 Jarque-Bera (JB): 1.792
Skew: -0.844 Prob(JB): 0.408
Kurtosis: 2.865 Cond. No. 190.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:53:06 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.244
Model: OLS Adj. R-squared: 0.186
Method: Least Squares F-statistic: 4.207
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0610
Time: 04:53:06 Log-Likelihood: -73.197
No. Observations: 15 AIC: 150.4
Df Residuals: 13 BIC: 151.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 413.1690 156.028 2.648 0.020 76.092 750.246
expression -33.5216 16.344 -2.051 0.061 -68.831 1.787
Omnibus: 4.923 Durbin-Watson: 1.882
Prob(Omnibus): 0.085 Jarque-Bera (JB): 1.489
Skew: 0.232 Prob(JB): 0.475
Kurtosis: 1.528 Cond. No. 170.