AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.087 | 0.771 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.663 |
Model: | OLS | Adj. R-squared: | 0.610 |
Method: | Least Squares | F-statistic: | 12.45 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.83e-05 |
Time: | 03:37:34 | Log-Likelihood: | -100.60 |
No. Observations: | 23 | AIC: | 209.2 |
Df Residuals: | 19 | BIC: | 213.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 139.5194 | 104.737 | 1.332 | 0.199 | -79.699 358.737 |
C(dose)[T.1] | -66.1432 | 145.475 | -0.455 | 0.654 | -370.625 238.339 |
expression | -10.0308 | 12.294 | -0.816 | 0.425 | -35.763 15.701 |
expression:C(dose)[T.1] | 13.7694 | 16.513 | 0.834 | 0.415 | -20.793 48.332 |
Omnibus: | 1.166 | Durbin-Watson: | 1.899 |
Prob(Omnibus): | 0.558 | Jarque-Bera (JB): | 0.833 |
Skew: | -0.027 | Prob(JB): | 0.659 |
Kurtosis: | 2.069 | Cond. No. | 392. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.616 |
Method: | Least Squares | F-statistic: | 18.62 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.71e-05 |
Time: | 03:37:34 | Log-Likelihood: | -101.01 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 74.6080 | 69.536 | 1.073 | 0.296 | -70.441 219.657 |
C(dose)[T.1] | 54.8597 | 10.164 | 5.397 | 0.000 | 33.658 76.062 |
expression | -2.3986 | 8.145 | -0.294 | 0.771 | -19.389 14.591 |
Omnibus: | 0.278 | Durbin-Watson: | 1.860 |
Prob(Omnibus): | 0.870 | Jarque-Bera (JB): | 0.458 |
Skew: | 0.042 | Prob(JB): | 0.795 |
Kurtosis: | 2.314 | Cond. No. | 143. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:37:34 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.142 |
Model: | OLS | Adj. R-squared: | 0.101 |
Method: | Least Squares | F-statistic: | 3.464 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0768 |
Time: | 03:37:34 | Log-Likelihood: | -111.35 |
No. Observations: | 23 | AIC: | 226.7 |
Df Residuals: | 21 | BIC: | 229.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -96.1302 | 94.717 | -1.015 | 0.322 | -293.105 100.845 |
expression | 19.9634 | 10.726 | 1.861 | 0.077 | -2.343 42.270 |
Omnibus: | 1.801 | Durbin-Watson: | 2.414 |
Prob(Omnibus): | 0.406 | Jarque-Bera (JB): | 1.028 |
Skew: | 0.078 | Prob(JB): | 0.598 |
Kurtosis: | 1.976 | Cond. No. | 127. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.258 | 0.621 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.462 |
Model: | OLS | Adj. R-squared: | 0.315 |
Method: | Least Squares | F-statistic: | 3.148 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0687 |
Time: | 03:37:34 | Log-Likelihood: | -70.651 |
No. Observations: | 15 | AIC: | 149.3 |
Df Residuals: | 11 | BIC: | 152.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 13.0702 | 113.795 | 0.115 | 0.911 | -237.390 263.531 |
C(dose)[T.1] | 76.4105 | 178.471 | 0.428 | 0.677 | -316.402 469.223 |
expression | 7.6499 | 15.927 | 0.480 | 0.640 | -27.406 42.706 |
expression:C(dose)[T.1] | -4.2442 | 23.437 | -0.181 | 0.860 | -55.829 47.341 |
Omnibus: | 2.934 | Durbin-Watson: | 0.959 |
Prob(Omnibus): | 0.231 | Jarque-Bera (JB): | 1.963 |
Skew: | -0.872 | Prob(JB): | 0.375 |
Kurtosis: | 2.689 | Cond. No. | 223. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.460 |
Model: | OLS | Adj. R-squared: | 0.370 |
Method: | Least Squares | F-statistic: | 5.119 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0247 |
Time: | 03:37:34 | Log-Likelihood: | -70.674 |
No. Observations: | 15 | AIC: | 147.3 |
Df Residuals: | 12 | BIC: | 149.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 26.9976 | 80.419 | 0.336 | 0.743 | -148.220 202.215 |
C(dose)[T.1] | 44.2779 | 18.339 | 2.414 | 0.033 | 4.321 84.235 |
expression | 5.6899 | 11.204 | 0.508 | 0.621 | -18.721 30.101 |
Omnibus: | 2.500 | Durbin-Watson: | 0.916 |
Prob(Omnibus): | 0.286 | Jarque-Bera (JB): | 1.700 |
Skew: | -0.804 | Prob(JB): | 0.427 |
Kurtosis: | 2.634 | Cond. No. | 80.8 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:37:35 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.198 |
Model: | OLS | Adj. R-squared: | 0.137 |
Method: | Least Squares | F-statistic: | 3.214 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0963 |
Time: | 03:37:35 | Log-Likelihood: | -73.643 |
No. Observations: | 15 | AIC: | 151.3 |
Df Residuals: | 13 | BIC: | 152.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -57.4802 | 84.798 | -0.678 | 0.510 | -240.674 125.714 |
expression | 19.9751 | 11.142 | 1.793 | 0.096 | -4.095 44.046 |
Omnibus: | 0.178 | Durbin-Watson: | 1.572 |
Prob(Omnibus): | 0.915 | Jarque-Bera (JB): | 0.139 |
Skew: | 0.161 | Prob(JB): | 0.933 |
Kurtosis: | 2.655 | Cond. No. | 72.1 |