AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.045 | 0.835 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.706 |
Model: | OLS | Adj. R-squared: | 0.659 |
Method: | Least Squares | F-statistic: | 15.19 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.77e-05 |
Time: | 04:48:29 | Log-Likelihood: | -99.034 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 19 | BIC: | 210.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 254.9124 | 165.365 | 1.542 | 0.140 | -91.201 601.025 |
C(dose)[T.1] | -513.1026 | 297.429 | -1.725 | 0.101 | -1135.628 109.423 |
expression | -21.3774 | 17.603 | -1.214 | 0.239 | -58.221 15.466 |
expression:C(dose)[T.1] | 62.0726 | 32.652 | 1.901 | 0.073 | -6.268 130.413 |
Omnibus: | 0.875 | Durbin-Watson: | 1.246 |
Prob(Omnibus): | 0.646 | Jarque-Bera (JB): | 0.458 |
Skew: | -0.344 | Prob(JB): | 0.795 |
Kurtosis: | 2.928 | Cond. No. | 799. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.56 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.77e-05 |
Time: | 04:48:29 | Log-Likelihood: | -101.04 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 85.5320 | 148.134 | 0.577 | 0.570 | -223.470 394.534 |
C(dose)[T.1] | 51.9979 | 10.807 | 4.812 | 0.000 | 29.456 74.540 |
expression | -3.3363 | 15.765 | -0.212 | 0.835 | -36.221 29.549 |
Omnibus: | 0.351 | Durbin-Watson: | 1.837 |
Prob(Omnibus): | 0.839 | Jarque-Bera (JB): | 0.502 |
Skew: | 0.062 | Prob(JB): | 0.778 |
Kurtosis: | 2.287 | Cond. No. | 316. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:48:29 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.244 |
Model: | OLS | Adj. R-squared: | 0.209 |
Method: | Least Squares | F-statistic: | 6.796 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0165 |
Time: | 04:48:29 | Log-Likelihood: | -109.88 |
No. Observations: | 23 | AIC: | 223.8 |
Df Residuals: | 21 | BIC: | 226.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 518.9076 | 168.587 | 3.078 | 0.006 | 168.311 869.504 |
expression | -47.7555 | 18.319 | -2.607 | 0.016 | -85.851 -9.660 |
Omnibus: | 1.593 | Durbin-Watson: | 1.829 |
Prob(Omnibus): | 0.451 | Jarque-Bera (JB): | 1.311 |
Skew: | 0.551 | Prob(JB): | 0.519 |
Kurtosis: | 2.606 | Cond. No. | 250. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.004 | 0.951 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.500 |
Model: | OLS | Adj. R-squared: | 0.364 |
Method: | Least Squares | F-statistic: | 3.673 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0471 |
Time: | 04:48:29 | Log-Likelihood: | -70.095 |
No. Observations: | 15 | AIC: | 148.2 |
Df Residuals: | 11 | BIC: | 151.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 410.3026 | 530.287 | 0.774 | 0.455 | -756.851 1577.456 |
C(dose)[T.1] | -809.6584 | 807.031 | -1.003 | 0.337 | -2585.922 966.605 |
expression | -34.2800 | 53.005 | -0.647 | 0.531 | -150.943 82.383 |
expression:C(dose)[T.1] | 86.4750 | 81.212 | 1.065 | 0.310 | -92.272 265.222 |
Omnibus: | 2.683 | Durbin-Watson: | 0.836 |
Prob(Omnibus): | 0.261 | Jarque-Bera (JB): | 1.527 |
Skew: | -0.781 | Prob(JB): | 0.466 |
Kurtosis: | 2.925 | Cond. No. | 1.34e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.888 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0280 |
Time: | 04:48:29 | Log-Likelihood: | -70.830 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 41.8565 | 404.070 | 0.104 | 0.919 | -838.537 922.250 |
C(dose)[T.1] | 49.4943 | 16.425 | 3.013 | 0.011 | 13.706 85.282 |
expression | 2.5567 | 40.382 | 0.063 | 0.951 | -85.428 90.541 |
Omnibus: | 2.815 | Durbin-Watson: | 0.798 |
Prob(Omnibus): | 0.245 | Jarque-Bera (JB): | 1.915 |
Skew: | -0.857 | Prob(JB): | 0.384 |
Kurtosis: | 2.649 | Cond. No. | 518. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:48:29 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.032 |
Model: | OLS | Adj. R-squared: | -0.042 |
Method: | Least Squares | F-statistic: | 0.4299 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.523 |
Time: | 04:48:29 | Log-Likelihood: | -75.056 |
No. Observations: | 15 | AIC: | 154.1 |
Df Residuals: | 13 | BIC: | 155.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 414.7474 | 489.816 | 0.847 | 0.412 | -643.435 1472.929 |
expression | -32.3019 | 49.267 | -0.656 | 0.523 | -138.737 74.133 |
Omnibus: | 1.874 | Durbin-Watson: | 1.569 |
Prob(Omnibus): | 0.392 | Jarque-Bera (JB): | 1.005 |
Skew: | 0.231 | Prob(JB): | 0.605 |
Kurtosis: | 1.819 | Cond. No. | 492. |