AIM Score vs. Gene Expression 
		Full X range:
		
		 
			
		
		Auto X range:
		
		 
		
		
		
		Group Comparisons: Boxplots
		
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  1.049  |   0.318  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.670 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.618 | 
  | Method: |              Least Squares |     F-statistic:        |     12.88 | 
  | Date: |              Mon, 03 Nov 2025 |    Prob (F-statistic): |  7.98e-05 | 
  | Time: |                  22:30:23 |        Log-Likelihood:     |   -100.34 | 
  | No. Observations: |           23 |         AIC:                |     208.7 | 
  | Df Residuals: |               19 |         BIC:                |     213.2 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                  -75.9761 |    118.827 |     -0.639 |   0.530 |   -324.684   172.732 | 
  | C(dose)[T.1] |               156.1715 |    206.412 |      0.757 |   0.459 |   -275.854   588.196 | 
  | expression |                  17.7560 |     16.186 |      1.097 |   0.286 |    -16.122    51.634 | 
  | expression:C(dose)[T.1] |    -13.7959 |     29.297 |     -0.471 |   0.643 |    -75.116    47.524 | 
  | Omnibus: |         0.090 |    Durbin-Watson:      |     2.026 | 
  | Prob(Omnibus): |   0.956 |    Jarque-Bera (JB):   |     0.305 | 
  | Skew: |            0.073 |    Prob(JB):           |     0.859 | 
  | Kurtosis: |        2.455 |    Cond. No.           |      411. | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.667 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.633 | 
  | Method: |              Least Squares |     F-statistic:        |     19.99 | 
  | Date: |              Mon, 03 Nov 2025 |    Prob (F-statistic): |  1.70e-05 | 
  | Time: |                  22:30:23 |        Log-Likelihood:     |   -100.47 | 
  | No. Observations: |           23 |         AIC:                |     206.9 | 
  | Df Residuals: |               20 |         BIC:                |     210.4 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |       -45.1025 |     97.155 |     -0.464 |   0.647 |   -247.764   157.559 | 
  | C(dose)[T.1] |     59.0980 |     10.233 |      5.775 |   0.000 |     37.751    80.445 | 
  | expression |       13.5451 |     13.226 |      1.024 |   0.318 |    -14.045    41.135 | 
  | Omnibus: |         0.263 |    Durbin-Watson:      |     2.062 | 
  | Prob(Omnibus): |   0.877 |    Jarque-Bera (JB):   |     0.444 | 
  | Skew: |            0.153 |    Prob(JB):           |     0.801 | 
  | Kurtosis: |        2.392 |    Cond. No.           |      166. | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.649 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.632 | 
  | Method: |              Least Squares |     F-statistic:        |     38.84 | 
  | Date: |              Mon, 03 Nov 2025 |    Prob (F-statistic): |  3.51e-06 | 
  | Time: |                  22:30:23 |        Log-Likelihood:     |   -101.06 | 
  | No. Observations: |           23 |         AIC:                |     206.1 | 
  | Df Residuals: |               21 |         BIC:                |     208.4 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        54.2083 |      5.919 |      9.159 |   0.000 |     41.900    66.517 | 
  | C(dose)[T.1] |     53.3371 |      8.558 |      6.232 |   0.000 |     35.539    71.135 | 
  | Omnibus: |         0.322 |    Durbin-Watson:      |     1.888 | 
  | Prob(Omnibus): |   0.851 |    Jarque-Bera (JB):   |     0.485 | 
  | Skew: |            0.060 |    Prob(JB):           |     0.785 | 
  | Kurtosis: |        2.299 |    Cond. No.           |      2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.110 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.068 | 
  | Method: |              Least Squares |     F-statistic:        |     2.609 | 
  | Date: |              Mon, 03 Nov 2025 |    Prob (F-statistic): |    0.121 |  
  | Time: |                  22:30:23 |        Log-Likelihood:     |   -111.76 | 
  | No. Observations: |           23 |         AIC:                |     227.5 | 
  | Df Residuals: |               21 |         BIC:                |     229.8 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |     282.4715 |    125.722 |      2.247 |   0.036 |     21.019   543.924 | 
  | expression |    -28.4429 |     17.611 |     -1.615 |   0.121 |    -65.066     8.181 | 
  | Omnibus: |         4.262 |    Durbin-Watson:      |     2.304 | 
  | Prob(Omnibus): |   0.119 |    Jarque-Bera (JB):   |     1.505 | 
  | Skew: |            0.049 |    Prob(JB):           |     0.471 | 
  | Kurtosis: |        1.751 |    Cond. No.           |      134. | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  0.090  |   0.769  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.610 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.504 | 
  | Method: |              Least Squares |     F-statistic:        |     5.742 | 
  | Date: |              Mon, 03 Nov 2025 |    Prob (F-statistic): |   0.0130 |  
  | Time: |                  22:30:23 |        Log-Likelihood:     |   -68.233 | 
  | No. Observations: |           15 |         AIC:                |     144.5 | 
  | Df Residuals: |               11 |         BIC:                |     147.3 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                 -365.5683 |    253.846 |     -1.440 |   0.178 |   -924.280   193.144 | 
  | C(dose)[T.1] |               657.4192 |    288.450 |      2.279 |   0.044 |     22.545  1292.294 | 
  | expression |                  57.0496 |     33.419 |      1.707 |   0.116 |    -16.505   130.605 | 
  | expression:C(dose)[T.1] |    -79.5782 |     37.757 |     -2.108 |   0.059 |   -162.680     3.523 | 
  | Omnibus: |         0.259 |    Durbin-Watson:      |     1.690 | 
  | Prob(Omnibus): |   0.879 |    Jarque-Bera (JB):   |     0.206 | 
  | Skew: |           -0.222 |    Prob(JB):           |     0.902 | 
  | Kurtosis: |        2.635 |    Cond. No.           |      495. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.453 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.362 | 
  | Method: |              Least Squares |     F-statistic:        |     4.967 | 
  | Date: |              Mon, 03 Nov 2025 |    Prob (F-statistic): |   0.0268 |  
  | Time: |                  22:30:23 |        Log-Likelihood:     |   -70.777 | 
  | No. Observations: |           15 |         AIC:                |     147.6 | 
  | Df Residuals: |               12 |         BIC:                |     149.7 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |       107.6177 |    134.389 |      0.801 |   0.439 |   -185.191   400.427 | 
  | C(dose)[T.1] |     50.1923 |     16.028 |      3.132 |   0.009 |     15.270    85.115 | 
  | expression |       -5.2951 |     17.642 |     -0.300 |   0.769 |    -43.734    33.144 | 
  | Omnibus: |         2.224 |    Durbin-Watson:      |     0.792 | 
  | Prob(Omnibus): |   0.329 |    Jarque-Bera (JB):   |     1.591 | 
  | Skew: |           -0.763 |    Prob(JB):           |     0.451 | 
  | Kurtosis: |        2.531 |    Cond. No.           |      135. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.449 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.406 | 
  | Method: |              Least Squares |     F-statistic:        |     10.58 | 
  | Date: |              Mon, 03 Nov 2025 |    Prob (F-statistic): |   0.00629 | 
  | Time: |                  22:30:23 |        Log-Likelihood:     |   -70.833 | 
  | No. Observations: |           15 |         AIC:                |     145.7 | 
  | Df Residuals: |               13 |         BIC:                |     147.1 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        67.4286 |     11.044 |      6.106 |   0.000 |     43.570    91.287 | 
  | C(dose)[T.1] |     49.1964 |     15.122 |      3.253 |   0.006 |     16.527    81.866 | 
  | Omnibus: |         2.713 |    Durbin-Watson:      |     0.810 | 
  | Prob(Omnibus): |   0.258 |    Jarque-Bera (JB):   |     1.868 | 
  | Skew: |           -0.843 |    Prob(JB):           |     0.393 | 
  | Kurtosis: |        2.619 |    Cond. No.           |      2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.006 | 
  | Model: |                    OLS |          Adj. R-squared:     |    -0.071 | 
  | Method: |              Least Squares |     F-statistic:        |   0.07549 | 
  | Date: |              Mon, 03 Nov 2025 |    Prob (F-statistic): |    0.788 |  
  | Time: |                  22:30:23 |        Log-Likelihood:     |   -75.257 | 
  | No. Observations: |           15 |         AIC:                |     154.5 | 
  | Df Residuals: |               13 |         BIC:                |     155.9 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |      46.4359 |    172.205 |      0.270 |   0.792 |   -325.591   418.463 | 
  | expression |      6.1417 |     22.354 |      0.275 |   0.788 |    -42.152    54.435 | 
  | Omnibus: |         1.011 |    Durbin-Watson:      |     1.616 | 
  | Prob(Omnibus): |   0.603 |    Jarque-Bera (JB):   |     0.727 | 
  | Skew: |            0.113 |    Prob(JB):           |     0.695 | 
  | Kurtosis: |        1.945 |    Cond. No.           |      133. |