AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.049 | 0.318 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.670 |
Model: | OLS | Adj. R-squared: | 0.618 |
Method: | Least Squares | F-statistic: | 12.88 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 7.98e-05 |
Time: | 05:12:07 | Log-Likelihood: | -100.34 |
No. Observations: | 23 | AIC: | 208.7 |
Df Residuals: | 19 | BIC: | 213.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -75.9761 | 118.827 | -0.639 | 0.530 | -324.684 172.732 |
C(dose)[T.1] | 156.1715 | 206.412 | 0.757 | 0.459 | -275.854 588.196 |
expression | 17.7560 | 16.186 | 1.097 | 0.286 | -16.122 51.634 |
expression:C(dose)[T.1] | -13.7959 | 29.297 | -0.471 | 0.643 | -75.116 47.524 |
Omnibus: | 0.090 | Durbin-Watson: | 2.026 |
Prob(Omnibus): | 0.956 | Jarque-Bera (JB): | 0.305 |
Skew: | 0.073 | Prob(JB): | 0.859 |
Kurtosis: | 2.455 | Cond. No. | 411. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.667 |
Model: | OLS | Adj. R-squared: | 0.633 |
Method: | Least Squares | F-statistic: | 19.99 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.70e-05 |
Time: | 05:12:07 | Log-Likelihood: | -100.47 |
No. Observations: | 23 | AIC: | 206.9 |
Df Residuals: | 20 | BIC: | 210.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -45.1025 | 97.155 | -0.464 | 0.647 | -247.764 157.559 |
C(dose)[T.1] | 59.0980 | 10.233 | 5.775 | 0.000 | 37.751 80.445 |
expression | 13.5451 | 13.226 | 1.024 | 0.318 | -14.045 41.135 |
Omnibus: | 0.263 | Durbin-Watson: | 2.062 |
Prob(Omnibus): | 0.877 | Jarque-Bera (JB): | 0.444 |
Skew: | 0.153 | Prob(JB): | 0.801 |
Kurtosis: | 2.392 | Cond. No. | 166. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:12:07 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.110 |
Model: | OLS | Adj. R-squared: | 0.068 |
Method: | Least Squares | F-statistic: | 2.609 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.121 |
Time: | 05:12:07 | Log-Likelihood: | -111.76 |
No. Observations: | 23 | AIC: | 227.5 |
Df Residuals: | 21 | BIC: | 229.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 282.4715 | 125.722 | 2.247 | 0.036 | 21.019 543.924 |
expression | -28.4429 | 17.611 | -1.615 | 0.121 | -65.066 8.181 |
Omnibus: | 4.262 | Durbin-Watson: | 2.304 |
Prob(Omnibus): | 0.119 | Jarque-Bera (JB): | 1.505 |
Skew: | 0.049 | Prob(JB): | 0.471 |
Kurtosis: | 1.751 | Cond. No. | 134. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.090 | 0.769 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.610 |
Model: | OLS | Adj. R-squared: | 0.504 |
Method: | Least Squares | F-statistic: | 5.742 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0130 |
Time: | 05:12:07 | Log-Likelihood: | -68.233 |
No. Observations: | 15 | AIC: | 144.5 |
Df Residuals: | 11 | BIC: | 147.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -365.5683 | 253.846 | -1.440 | 0.178 | -924.280 193.144 |
C(dose)[T.1] | 657.4192 | 288.450 | 2.279 | 0.044 | 22.545 1292.294 |
expression | 57.0496 | 33.419 | 1.707 | 0.116 | -16.505 130.605 |
expression:C(dose)[T.1] | -79.5782 | 37.757 | -2.108 | 0.059 | -162.680 3.523 |
Omnibus: | 0.259 | Durbin-Watson: | 1.690 |
Prob(Omnibus): | 0.879 | Jarque-Bera (JB): | 0.206 |
Skew: | -0.222 | Prob(JB): | 0.902 |
Kurtosis: | 2.635 | Cond. No. | 495. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.453 |
Model: | OLS | Adj. R-squared: | 0.362 |
Method: | Least Squares | F-statistic: | 4.967 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0268 |
Time: | 05:12:07 | Log-Likelihood: | -70.777 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 107.6177 | 134.389 | 0.801 | 0.439 | -185.191 400.427 |
C(dose)[T.1] | 50.1923 | 16.028 | 3.132 | 0.009 | 15.270 85.115 |
expression | -5.2951 | 17.642 | -0.300 | 0.769 | -43.734 33.144 |
Omnibus: | 2.224 | Durbin-Watson: | 0.792 |
Prob(Omnibus): | 0.329 | Jarque-Bera (JB): | 1.591 |
Skew: | -0.763 | Prob(JB): | 0.451 |
Kurtosis: | 2.531 | Cond. No. | 135. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:12:07 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.006 |
Model: | OLS | Adj. R-squared: | -0.071 |
Method: | Least Squares | F-statistic: | 0.07549 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.788 |
Time: | 05:12:07 | Log-Likelihood: | -75.257 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 46.4359 | 172.205 | 0.270 | 0.792 | -325.591 418.463 |
expression | 6.1417 | 22.354 | 0.275 | 0.788 | -42.152 54.435 |
Omnibus: | 1.011 | Durbin-Watson: | 1.616 |
Prob(Omnibus): | 0.603 | Jarque-Bera (JB): | 0.727 |
Skew: | 0.113 | Prob(JB): | 0.695 |
Kurtosis: | 1.945 | Cond. No. | 133. |