AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.024 0.879 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.594
Method: Least Squares F-statistic: 11.74
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000140
Time: 03:33:00 Log-Likelihood: -101.04
No. Observations: 23 AIC: 210.1
Df Residuals: 19 BIC: 214.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 44.6619 133.697 0.334 0.742 -235.170 324.494
C(dose)[T.1] 27.6995 248.859 0.111 0.913 -493.169 548.568
expression 1.1201 15.671 0.071 0.944 -31.679 33.919
expression:C(dose)[T.1] 3.0312 29.297 0.103 0.919 -58.287 64.350
Omnibus: 0.173 Durbin-Watson: 1.858
Prob(Omnibus): 0.917 Jarque-Bera (JB): 0.386
Skew: 0.022 Prob(JB): 0.824
Kurtosis: 2.367 Cond. No. 568.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.53
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.80e-05
Time: 03:33:00 Log-Likelihood: -101.05
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 37.2707 110.182 0.338 0.739 -192.565 267.106
C(dose)[T.1] 53.4307 8.786 6.082 0.000 35.104 71.757
expression 1.9874 12.909 0.154 0.879 -24.940 28.915
Omnibus: 0.208 Durbin-Watson: 1.857
Prob(Omnibus): 0.901 Jarque-Bera (JB): 0.411
Skew: 0.044 Prob(JB): 0.814
Kurtosis: 2.351 Cond. No. 217.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:33:00 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.046
Method: Least Squares F-statistic: 0.02639
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.873
Time: 03:33:00 Log-Likelihood: -113.09
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 109.0097 180.459 0.604 0.552 -266.275 484.295
expression -3.4461 21.213 -0.162 0.873 -47.562 40.670
Omnibus: 3.120 Durbin-Watson: 2.507
Prob(Omnibus): 0.210 Jarque-Bera (JB): 1.540
Skew: 0.294 Prob(JB): 0.463
Kurtosis: 1.877 Cond. No. 216.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.857 0.198 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.523
Model: OLS Adj. R-squared: 0.393
Method: Least Squares F-statistic: 4.019
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0372
Time: 03:33:01 Log-Likelihood: -69.750
No. Observations: 15 AIC: 147.5
Df Residuals: 11 BIC: 150.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -110.6738 182.893 -0.605 0.557 -513.218 291.870
C(dose)[T.1] 72.2158 255.559 0.283 0.783 -490.267 634.698
expression 22.2459 22.802 0.976 0.350 -27.940 72.432
expression:C(dose)[T.1] -2.5639 32.114 -0.080 0.938 -73.247 68.119
Omnibus: 1.652 Durbin-Watson: 1.063
Prob(Omnibus): 0.438 Jarque-Bera (JB): 1.311
Skew: -0.587 Prob(JB): 0.519
Kurtosis: 2.153 Cond. No. 360.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.523
Model: OLS Adj. R-squared: 0.443
Method: Least Squares F-statistic: 6.569
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0118
Time: 03:33:01 Log-Likelihood: -69.754
No. Observations: 15 AIC: 145.5
Df Residuals: 12 BIC: 147.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -100.3259 123.577 -0.812 0.433 -369.578 168.926
C(dose)[T.1] 51.8502 14.776 3.509 0.004 19.656 84.045
expression 20.9534 15.377 1.363 0.198 -12.551 54.458
Omnibus: 1.602 Durbin-Watson: 1.027
Prob(Omnibus): 0.449 Jarque-Bera (JB): 1.275
Skew: -0.572 Prob(JB): 0.529
Kurtosis: 2.145 Cond. No. 137.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:33:01 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.033
Model: OLS Adj. R-squared: -0.042
Method: Least Squares F-statistic: 0.4408
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.518
Time: 03:33:01 Log-Likelihood: -75.050
No. Observations: 15 AIC: 154.1
Df Residuals: 13 BIC: 155.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -16.2124 165.791 -0.098 0.924 -374.383 341.958
expression 13.8412 20.846 0.664 0.518 -31.195 58.877
Omnibus: 1.817 Durbin-Watson: 1.849
Prob(Omnibus): 0.403 Jarque-Bera (JB): 0.962
Skew: 0.185 Prob(JB): 0.618
Kurtosis: 1.816 Cond. No. 134.