AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.020 | 0.889 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.653 |
Model: | OLS | Adj. R-squared: | 0.598 |
Method: | Least Squares | F-statistic: | 11.91 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000129 |
Time: | 04:32:45 | Log-Likelihood: | -100.94 |
No. Observations: | 23 | AIC: | 209.9 |
Df Residuals: | 19 | BIC: | 214.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 137.4254 | 203.385 | 0.676 | 0.507 | -288.264 563.115 |
C(dose)[T.1] | -66.8788 | 275.893 | -0.242 | 0.811 | -644.330 510.572 |
expression | -9.2101 | 22.499 | -0.409 | 0.687 | -56.302 37.882 |
expression:C(dose)[T.1] | 13.4640 | 31.065 | 0.433 | 0.670 | -51.556 78.484 |
Omnibus: | 0.289 | Durbin-Watson: | 1.714 |
Prob(Omnibus): | 0.865 | Jarque-Bera (JB): | 0.464 |
Skew: | -0.030 | Prob(JB): | 0.793 |
Kurtosis: | 2.307 | Cond. No. | 728. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.52 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.81e-05 |
Time: | 04:32:45 | Log-Likelihood: | -101.05 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 73.6120 | 137.433 | 0.536 | 0.598 | -213.067 360.291 |
C(dose)[T.1] | 52.6117 | 10.158 | 5.179 | 0.000 | 31.423 73.800 |
expression | -2.1475 | 15.196 | -0.141 | 0.889 | -33.845 29.550 |
Omnibus: | 0.358 | Durbin-Watson: | 1.846 |
Prob(Omnibus): | 0.836 | Jarque-Bera (JB): | 0.505 |
Skew: | 0.047 | Prob(JB): | 0.777 |
Kurtosis: | 2.280 | Cond. No. | 283. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:32:45 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.179 |
Model: | OLS | Adj. R-squared: | 0.140 |
Method: | Least Squares | F-statistic: | 4.583 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0442 |
Time: | 04:32:45 | Log-Likelihood: | -110.83 |
No. Observations: | 23 | AIC: | 225.7 |
Df Residuals: | 21 | BIC: | 227.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 451.6985 | 173.881 | 2.598 | 0.017 | 90.093 813.304 |
expression | -41.9188 | 19.581 | -2.141 | 0.044 | -82.640 -1.198 |
Omnibus: | 1.489 | Durbin-Watson: | 2.152 |
Prob(Omnibus): | 0.475 | Jarque-Bera (JB): | 0.830 |
Skew: | 0.465 | Prob(JB): | 0.660 |
Kurtosis: | 3.003 | Cond. No. | 239. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.039 | 0.847 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.490 |
Model: | OLS | Adj. R-squared: | 0.352 |
Method: | Least Squares | F-statistic: | 3.530 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0521 |
Time: | 04:32:45 | Log-Likelihood: | -70.243 |
No. Observations: | 15 | AIC: | 148.5 |
Df Residuals: | 11 | BIC: | 151.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -82.6402 | 293.208 | -0.282 | 0.783 | -727.987 562.707 |
C(dose)[T.1] | 444.2920 | 424.440 | 1.047 | 0.318 | -489.894 1378.478 |
expression | 16.1450 | 31.520 | 0.512 | 0.619 | -53.230 85.520 |
expression:C(dose)[T.1] | -41.6866 | 44.895 | -0.929 | 0.373 | -140.501 57.127 |
Omnibus: | 1.337 | Durbin-Watson: | 0.962 |
Prob(Omnibus): | 0.512 | Jarque-Bera (JB): | 1.101 |
Skew: | -0.508 | Prob(JB): | 0.577 |
Kurtosis: | 2.147 | Cond. No. | 682. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.451 |
Model: | OLS | Adj. R-squared: | 0.359 |
Method: | Least Squares | F-statistic: | 4.920 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0275 |
Time: | 04:32:45 | Log-Likelihood: | -70.809 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 108.3546 | 207.747 | 0.522 | 0.611 | -344.287 560.996 |
C(dose)[T.1] | 50.5094 | 17.065 | 2.960 | 0.012 | 13.328 87.691 |
expression | -4.4030 | 22.316 | -0.197 | 0.847 | -53.026 44.220 |
Omnibus: | 2.343 | Durbin-Watson: | 0.855 |
Prob(Omnibus): | 0.310 | Jarque-Bera (JB): | 1.708 |
Skew: | -0.786 | Prob(JB): | 0.426 |
Kurtosis: | 2.488 | Cond. No. | 254. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:32:45 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.049 |
Model: | OLS | Adj. R-squared: | -0.024 |
Method: | Least Squares | F-statistic: | 0.6761 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.426 |
Time: | 04:32:45 | Log-Likelihood: | -74.920 |
No. Observations: | 15 | AIC: | 153.8 |
Df Residuals: | 13 | BIC: | 155.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -108.2113 | 245.709 | -0.440 | 0.667 | -639.034 422.611 |
expression | 21.3535 | 25.969 | 0.822 | 0.426 | -34.748 77.455 |
Omnibus: | 0.669 | Durbin-Watson: | 1.422 |
Prob(Omnibus): | 0.716 | Jarque-Bera (JB): | 0.603 |
Skew: | 0.030 | Prob(JB): | 0.740 |
Kurtosis: | 2.019 | Cond. No. | 237. |