AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.534 0.474 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.607
Method: Least Squares F-statistic: 12.34
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.000104
Time: 11:49:24 Log-Likelihood: -100.67
No. Observations: 23 AIC: 209.3
Df Residuals: 19 BIC: 213.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 64.7977 53.729 1.206 0.243 -47.658 177.254
C(dose)[T.1] 79.3217 71.378 1.111 0.280 -70.073 228.717
expression -2.1102 10.637 -0.198 0.845 -24.374 20.154
expression:C(dose)[T.1] -5.4864 14.375 -0.382 0.707 -35.574 24.601
Omnibus: 1.664 Durbin-Watson: 1.853
Prob(Omnibus): 0.435 Jarque-Bera (JB): 0.994
Skew: 0.083 Prob(JB): 0.608
Kurtosis: 1.995 Cond. No. 110.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.624
Method: Least Squares F-statistic: 19.26
Date: Tue, 03 Dec 2024 Prob (F-statistic): 2.18e-05
Time: 11:49:24 Log-Likelihood: -100.76
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 79.8730 35.636 2.241 0.037 5.538 154.208
C(dose)[T.1] 52.2956 8.772 5.962 0.000 33.998 70.593
expression -5.1143 7.000 -0.731 0.474 -19.717 9.488
Omnibus: 1.858 Durbin-Watson: 1.842
Prob(Omnibus): 0.395 Jarque-Bera (JB): 1.028
Skew: 0.002 Prob(JB): 0.598
Kurtosis: 1.964 Cond. No. 42.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 03 Dec 2024 Prob (F-statistic): 3.51e-06
Time: 11:49:24 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.051
Model: OLS Adj. R-squared: 0.006
Method: Least Squares F-statistic: 1.122
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.302
Time: 11:49:24 Log-Likelihood: -112.51
No. Observations: 23 AIC: 229.0
Df Residuals: 21 BIC: 231.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 138.2623 55.724 2.481 0.022 22.378 254.146
expression -11.8975 11.234 -1.059 0.302 -35.259 11.464
Omnibus: 1.741 Durbin-Watson: 2.602
Prob(Omnibus): 0.419 Jarque-Bera (JB): 1.122
Skew: 0.232 Prob(JB): 0.571
Kurtosis: 2.022 Cond. No. 40.9

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.077 0.175 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.530
Model: OLS Adj. R-squared: 0.402
Method: Least Squares F-statistic: 4.138
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0343
Time: 11:49:24 Log-Likelihood: -69.634
No. Observations: 15 AIC: 147.3
Df Residuals: 11 BIC: 150.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 192.5495 121.930 1.579 0.143 -75.816 460.915
C(dose)[T.1] 44.1823 179.036 0.247 0.810 -349.874 438.239
expression -20.7265 20.114 -1.030 0.325 -64.998 23.545
expression:C(dose)[T.1] 1.3369 29.150 0.046 0.964 -62.821 65.495
Omnibus: 2.155 Durbin-Watson: 1.071
Prob(Omnibus): 0.340 Jarque-Bera (JB): 1.605
Skew: -0.751 Prob(JB): 0.448
Kurtosis: 2.441 Cond. No. 196.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.530
Model: OLS Adj. R-squared: 0.452
Method: Least Squares F-statistic: 6.769
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0108
Time: 11:49:24 Log-Likelihood: -69.636
No. Observations: 15 AIC: 145.3
Df Residuals: 12 BIC: 147.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 188.7066 84.818 2.225 0.046 3.904 373.509
C(dose)[T.1] 52.3635 14.697 3.563 0.004 20.341 84.386
expression -20.0899 13.940 -1.441 0.175 -50.462 10.282
Omnibus: 2.126 Durbin-Watson: 1.060
Prob(Omnibus): 0.345 Jarque-Bera (JB): 1.585
Skew: -0.745 Prob(JB): 0.453
Kurtosis: 2.440 Cond. No. 74.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00629
Time: 11:49:24 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.033
Model: OLS Adj. R-squared: -0.041
Method: Least Squares F-statistic: 0.4444
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.517
Time: 11:49:24 Log-Likelihood: -75.048
No. Observations: 15 AIC: 154.1
Df Residuals: 13 BIC: 155.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 171.1820 116.701 1.467 0.166 -80.935 423.299
expression -12.6641 18.996 -0.667 0.517 -53.703 28.375
Omnibus: 1.734 Durbin-Watson: 1.930
Prob(Omnibus): 0.420 Jarque-Bera (JB): 0.918
Skew: 0.136 Prob(JB): 0.632
Kurtosis: 1.819 Cond. No. 73.6