AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.015 | 0.904 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.595 |
Method: | Least Squares | F-statistic: | 11.76 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000140 |
Time: | 05:09:14 | Log-Likelihood: | -101.04 |
No. Observations: | 23 | AIC: | 210.1 |
Df Residuals: | 19 | BIC: | 214.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 51.9846 | 152.101 | 0.342 | 0.736 | -266.367 370.336 |
C(dose)[T.1] | 97.5188 | 249.783 | 0.390 | 0.701 | -425.283 620.321 |
expression | 0.3192 | 21.816 | 0.015 | 0.988 | -45.343 45.981 |
expression:C(dose)[T.1] | -6.2574 | 35.516 | -0.176 | 0.862 | -80.594 68.079 |
Omnibus: | 0.340 | Durbin-Watson: | 1.876 |
Prob(Omnibus): | 0.843 | Jarque-Bera (JB): | 0.496 |
Skew: | 0.068 | Prob(JB): | 0.780 |
Kurtosis: | 2.293 | Cond. No. | 490. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.52 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.81e-05 |
Time: | 05:09:14 | Log-Likelihood: | -101.05 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 68.4315 | 117.140 | 0.584 | 0.566 | -175.918 312.781 |
C(dose)[T.1] | 53.5405 | 8.925 | 5.999 | 0.000 | 34.924 72.157 |
expression | -2.0418 | 16.793 | -0.122 | 0.904 | -37.072 32.988 |
Omnibus: | 0.413 | Durbin-Watson: | 1.873 |
Prob(Omnibus): | 0.813 | Jarque-Bera (JB): | 0.535 |
Skew: | 0.052 | Prob(JB): | 0.765 |
Kurtosis: | 2.260 | Cond. No. | 192. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:09:14 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.018 |
Model: | OLS | Adj. R-squared: | -0.028 |
Method: | Least Squares | F-statistic: | 0.3910 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.538 |
Time: | 05:09:14 | Log-Likelihood: | -112.89 |
No. Observations: | 23 | AIC: | 229.8 |
Df Residuals: | 21 | BIC: | 232.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -38.4125 | 189.046 | -0.203 | 0.841 | -431.555 354.730 |
expression | 16.8425 | 26.934 | 0.625 | 0.538 | -39.170 72.855 |
Omnibus: | 2.893 | Durbin-Watson: | 2.507 |
Prob(Omnibus): | 0.235 | Jarque-Bera (JB): | 1.522 |
Skew: | 0.313 | Prob(JB): | 0.467 |
Kurtosis: | 1.906 | Cond. No. | 189. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.331 | 0.576 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.509 |
Model: | OLS | Adj. R-squared: | 0.375 |
Method: | Least Squares | F-statistic: | 3.797 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0432 |
Time: | 05:09:14 | Log-Likelihood: | -69.969 |
No. Observations: | 15 | AIC: | 147.9 |
Df Residuals: | 11 | BIC: | 150.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 281.5234 | 208.551 | 1.350 | 0.204 | -177.495 740.542 |
C(dose)[T.1] | -339.2483 | 387.126 | -0.876 | 0.400 | -1191.307 512.811 |
expression | -29.8552 | 29.039 | -1.028 | 0.326 | -93.770 34.060 |
expression:C(dose)[T.1] | 54.0026 | 53.680 | 1.006 | 0.336 | -64.147 172.152 |
Omnibus: | 1.799 | Durbin-Watson: | 0.871 |
Prob(Omnibus): | 0.407 | Jarque-Bera (JB): | 1.395 |
Skew: | -0.603 | Prob(JB): | 0.498 |
Kurtosis: | 2.119 | Cond. No. | 449. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.464 |
Model: | OLS | Adj. R-squared: | 0.374 |
Method: | Least Squares | F-statistic: | 5.185 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0238 |
Time: | 05:09:14 | Log-Likelihood: | -70.629 |
No. Observations: | 15 | AIC: | 147.3 |
Df Residuals: | 12 | BIC: | 149.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 168.1944 | 175.596 | 0.958 | 0.357 | -214.397 550.786 |
C(dose)[T.1] | 49.8871 | 15.574 | 3.203 | 0.008 | 15.955 83.819 |
expression | -14.0517 | 24.436 | -0.575 | 0.576 | -67.292 39.189 |
Omnibus: | 3.914 | Durbin-Watson: | 0.878 |
Prob(Omnibus): | 0.141 | Jarque-Bera (JB): | 2.169 |
Skew: | -0.928 | Prob(JB): | 0.338 |
Kurtosis: | 3.156 | Cond. No. | 167. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:09:14 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.005 |
Model: | OLS | Adj. R-squared: | -0.072 |
Method: | Least Squares | F-statistic: | 0.06320 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.805 |
Time: | 05:09:14 | Log-Likelihood: | -75.264 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 151.3534 | 229.680 | 0.659 | 0.521 | -344.841 647.547 |
expression | -8.0150 | 31.881 | -0.251 | 0.805 | -76.889 60.859 |
Omnibus: | 0.988 | Durbin-Watson: | 1.690 |
Prob(Omnibus): | 0.610 | Jarque-Bera (JB): | 0.718 |
Skew: | 0.107 | Prob(JB): | 0.698 |
Kurtosis: | 1.950 | Cond. No. | 166. |