AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.387 0.541 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.664
Model: OLS Adj. R-squared: 0.611
Method: Least Squares F-statistic: 12.53
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.48e-05
Time: 03:32:18 Log-Likelihood: -100.56
No. Observations: 23 AIC: 209.1
Df Residuals: 19 BIC: 213.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 39.5956 106.137 0.373 0.713 -182.551 261.742
C(dose)[T.1] 149.4262 138.667 1.078 0.295 -140.807 439.659
expression 2.5778 18.693 0.138 0.892 -36.547 41.702
expression:C(dose)[T.1] -16.8783 24.362 -0.693 0.497 -67.868 34.112
Omnibus: 0.430 Durbin-Watson: 1.907
Prob(Omnibus): 0.806 Jarque-Bera (JB): 0.565
Skew: 0.210 Prob(JB): 0.754
Kurtosis: 2.357 Cond. No. 250.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 19.05
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.34e-05
Time: 03:32:18 Log-Likelihood: -100.84
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 95.9246 67.332 1.425 0.170 -44.527 236.376
C(dose)[T.1] 53.5496 8.693 6.160 0.000 35.416 71.683
expression -7.3592 11.831 -0.622 0.541 -32.038 17.319
Omnibus: 0.681 Durbin-Watson: 1.923
Prob(Omnibus): 0.712 Jarque-Bera (JB): 0.741
Skew: 0.305 Prob(JB): 0.690
Kurtosis: 2.366 Cond. No. 91.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:32:18 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.002
Model: OLS Adj. R-squared: -0.045
Method: Least Squares F-statistic: 0.05240
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.821
Time: 03:32:18 Log-Likelihood: -113.08
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 105.2614 111.819 0.941 0.357 -127.279 337.802
expression -4.4953 19.637 -0.229 0.821 -45.333 36.343
Omnibus: 3.506 Durbin-Watson: 2.528
Prob(Omnibus): 0.173 Jarque-Bera (JB): 1.623
Skew: 0.297 Prob(JB): 0.444
Kurtosis: 1.843 Cond. No. 91.1

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.509 0.489 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.472
Model: OLS Adj. R-squared: 0.328
Method: Least Squares F-statistic: 3.276
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0626
Time: 03:32:19 Log-Likelihood: -70.512
No. Observations: 15 AIC: 149.0
Df Residuals: 11 BIC: 151.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -33.6027 263.746 -0.127 0.901 -614.103 546.898
C(dose)[T.1] 80.9919 289.939 0.279 0.785 -557.161 719.144
expression 21.1836 55.246 0.383 0.709 -100.411 142.778
expression:C(dose)[T.1] -6.9567 60.493 -0.115 0.911 -140.100 126.187
Omnibus: 3.599 Durbin-Watson: 0.755
Prob(Omnibus): 0.165 Jarque-Bera (JB): 2.145
Skew: -0.926 Prob(JB): 0.342
Kurtosis: 2.974 Cond. No. 281.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.471
Model: OLS Adj. R-squared: 0.383
Method: Least Squares F-statistic: 5.346
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0219
Time: 03:32:19 Log-Likelihood: -70.521
No. Observations: 15 AIC: 147.0
Df Residuals: 12 BIC: 149.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -5.9302 103.443 -0.057 0.955 -231.312 219.452
C(dose)[T.1] 47.7012 15.558 3.066 0.010 13.803 81.599
expression 15.3814 21.560 0.713 0.489 -31.595 62.357
Omnibus: 3.876 Durbin-Watson: 0.758
Prob(Omnibus): 0.144 Jarque-Bera (JB): 2.307
Skew: -0.961 Prob(JB): 0.315
Kurtosis: 3.014 Cond. No. 68.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:32:19 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.057
Model: OLS Adj. R-squared: -0.016
Method: Least Squares F-statistic: 0.7850
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.392
Time: 03:32:19 Log-Likelihood: -74.860
No. Observations: 15 AIC: 153.7
Df Residuals: 13 BIC: 155.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -23.4232 132.519 -0.177 0.862 -309.714 262.867
expression 24.2866 27.411 0.886 0.392 -34.931 83.504
Omnibus: 1.091 Durbin-Watson: 1.784
Prob(Omnibus): 0.580 Jarque-Bera (JB): 0.733
Skew: 0.016 Prob(JB): 0.693
Kurtosis: 1.918 Cond. No. 67.7